Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt OH = x cm (R = OH)
Ta có OM = x – 4 cm
Áp đụng định lý Pytago ta tìm được x = 10cm
C D H M O K
Kéo dài HO về phía O cắt (o) tại K => KH là đường kính (o). Nối CH; CK ta có
^KCH=90 (góc nội tiếp chắn nửa đường tròn)
CM=DM=CD/2=8 cm (bán kính vuông góc với dây cung thì chia đôi dây cung)
Xét tg vuông KCH có \(CM^2=MH.MK\Rightarrow8^2=4.MK\Rightarrow MK=16cm\)
\(\Rightarrow KH=MH+MK=4+16=20cm\Rightarrow OK=\frac{KH}{2}=10cm\)
a: ΔOAB cân tại O
mà OI là đường trung tuyến
nên OI vuông góc AB
I là trung điểm của AB
=>IA=IB=16/2=8cm
ΔOIA vuông tại I
=>OA^2=OI^2+IA^2
=>OI^2=10^2-8^2=36
=>OI=6(cm)
b: OM=OI+IM
=>6+IM=10
=>IM=4cm
ΔMIA vuông tại I
=>MI^2+IA^2=MA^2
=>\(MA=\sqrt{4^2+8^2}=4\sqrt{5}\left(cm\right)\)