Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì \(OC\perp AB\Rightarrow\widehat{O}=90^o\)
Xét \(\left(O;\frac{AB}{2}\right)\):
\(\Delta ABM\)nt nửa đường tròn, có AB là đường kính
\(\Rightarrow\Delta ABM\)vuông tại M\(\Rightarrow\widehat{AMB}=90^o\)
Xét \(\Delta ANO\)và \(\Delta ABM\)có:
\(\widehat{BAM}\)chung
\(\widehat{AON}=\widehat{AMB}=90^o\)
\(\Rightarrow\Delta ANO\infty\Delta ABM\left(gg\right)\)\(\Rightarrow\frac{AN}{AB}=\frac{AO}{AM}\Rightarrow AN.AM=AO.AB=OA.2OA=2OA^2\)
Vì OA là bán kính của nửa đường tròn nên tích AN.AM ko đổi
b) Xét tg MNOB có \(\widehat{NMB}+\widehat{BON}=90^o+90^o=180^o\).Mà 2 góc ở vị trí đối nhau
\(\Rightarrow Tg\)MNOB là tg nt
Vì \(CD\perp AM\Rightarrow\widehat{D}=90^o\)
Xét tg AODC có: \(\widehat{AOC}=\widehat{CDA}=90^o\).Mà O và D là 2 đỉnh kề nhau nhìn cạnh AC dưới 1gocs 90 độ
\(\Rightarrow\)AODC là tg nt
c) \(\Delta COD\)cân tại D \(\Rightarrow\widehat{DCO}=\widehat{DOC}\)và CD =OD
Do AODC là tg nt \(\Rightarrow\widehat{DOC}=\widehat{DAO}\)(2 góc nt cùng chắn cung OD) và \(\widehat{DOC}=\widehat{DAC}\)(2 góc nt chắn cung CD)
Suy ra \(\widehat{DAC}=\widehat{DAO}\)
Mà \(\widehat{DAC}\)là góc nt chắn cung CM; \(\widehat{DAO}\)là góc nt chắn cung BM
\(\Rightarrow sđ\widebat{CM=sđ\widebat{BM}\Rightarrow}\)M là điểm chính giữa cung BC (vì M \(\in\)BC)
Vậy \(\Delta DOC\)cân tại D thì M là điểm chính giữa cung BC
góc AMB=1/2*180=90 độ
góc NOB+góc NMB=180 độ
=>NOBM nội tiếp
góc AOC=góc AHC=90 độ
=>AOHC nội tiếp
a/ Ta có: QP vuông góc với AM tại P (gt) (1)
AB vuông góc với AM tại A(do Ax là tiếp tuyến của (O) tại A) (2)
Từ (1) và (2)=> QP//AB (3)
Mà: AP=PM=1/2 AM (gt)(4)
Từ (3) và (4)=>QP là đường trung bình trong tam giác ABM
=> QB=QM=1/2 BM (5)
Mà OB=OA (=R) (6)
Từ (5) và (6)=>OQ là đường trung bình trong tam giác ABM
=>OQ//AM (7)
Từ (2) và (7)=>góc BOQ=90 độ (=góc BAM)(8)
Tứ giác BNAC nội tiếp (O)
=> góc BCN=góc BAN (9)
Mà góc BAN+ góc ABN=90 độ (tam giác BOQ vuông do góc QOB=90 độ) (10)
Từ (9) và (10)=> góc BCN+góc ABN=90 độ (11)
Lại có: góc ABN + góc BQO= 90 độ (Tam giác BOQ vuông) (12)
Từ (11) và (12)=> góc BCN=góc BQO
hay góc BCN=góc OQN (do B, N, Q thẳng hàng) (đpcm)
a: sđ cung AC=sđ cung BC
=>góc ANC=góc BDC
=>góc PNQ=góc PDQ
=>DQPN nội tiếp
=>góc NQP=góc NDP
góc NDB=góc NAB
=>góc NQP=góc NAB
=>PQ//AB
=>PQ vuông góc CD
b: Xét ΔACQ và ΔMAC có
góc CAQ=góc AMC
góc AQC=góc MCA
=>ΔACQ đồng dạng với ΔMAC
Bài 4:
a:
Xét (O) có
ΔCED nội tiếp
CD là đường kính
=>ΔCED vuông tại E
ΔOEF cân tại O
mà OI là đường cao
nên I là trung điểm của EF
Xét tứ giác CEMF có
I là trung điểm chung của CM và EF
CM vuông góc EF
=>CEMF là hình thoi
=>CE//MF
=<MF vuông góc ED(1)
Xét (O') có
ΔMPD nội tiêp
MD là đường kính
=>ΔMPD vuông tại P
=>MP vuông góc ED(2)
Từ (1), (2) suy ra F,M,P thẳng hàng
b: góc IPO'=góc IPM+góc O'PM
=góc IEM+góc O'MP
=góc IEM+góc FMI=90 độ
=>IP là tiếp tuyến của (O')
Gọi MP, QP cắt AB tại K, L
Ta chứng minh được PQ vuông góc AB
\(\Delta\)AON đồng dạng \(\Delta\)APB suy ra \(AN=AM=\sqrt{OA^2+OM^2}=\frac{R\sqrt{5}}{2}\)
\(\frac{AO}{AP}=\frac{ON}{PB}=\frac{AN}{AB}\Rightarrow\frac{R}{AP}=\frac{\frac{R}{2}}{PB}+\frac{\frac{R\sqrt{5}}{2}}{2R}=\frac{\sqrt{5}}{4}\Rightarrow AP=\frac{4R\sqrt{5}}{5};BP=\frac{2R\sqrt{5}}{5}\)
Ta có
\(BP^2=BL.AB\Rightarrow BL=\frac{BP^2}{AB}=\frac{2R}{5};OL=OB-BL=\frac{3R}{5};PL=\sqrt{BP^2-BL^2}=\frac{4R}{5}\)\(\frac{KL}{OK}=\frac{KP}{MK}=\frac{PL}{OM}=\frac{\frac{4R}{5}}{\frac{R}{2}}=\frac{8}{5}\Rightarrow\frac{KL}{8}=\frac{OK}{5}=\frac{OL}{13}=\frac{\frac{3R}{5}}{13}=\frac{3R}{65}\Rightarrow KL=\frac{24R}{65};OK=\frac{3R}{13}\)
\(MP=MK+KP=\sqrt{OM^2+OK^2}+\sqrt{KL^2+PL^2}=\frac{\sqrt{205}R}{10}\)
có \(MP=\frac{\sqrt{205}R}{10},AP=\frac{4R\sqrt{5}}{5};AM=\frac{R\sqrt{5}}{2}\)
\(AM^2+MP^2\ne AP^2\)nên MA không vuông góc MP
Sorry, vừa rồi mình nhầm O với giao điểm của AB với QN.
Mình sửa lại như sau: Gọi H là giao của QN và AB, F là giao của AB và QP. Từ P vẽ PK vuông góc với CD tại K.
Giả sử AQ vuông góc với MP suy ra H là trực tâm tam giác AQP. Suy ra BH = 2 . BF.
Vì HN song song với BP và PK // AO ta có đẳng thức sau:
NK/NO = PK / AO = NP/NA = BH/HA
suy ra
(r-KD)/(r/2) = (r-BF)/r = 2BF/(2r-2BF)
ở đó r là bán kính đường tròn (O). Ngoài ra ta còn có BF.(2r-BF) = PF^2 = (r-KD)^2
Từ đó rút ra điều vô lý.