K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2: góc OME+góc OAE=180 độ

=>OMEA nội tiếp

=>góc AOE=góc AME=góc OMB

 

1. Cho đường tròn (O) có bán kính R và điểm C nằm ngoài đường tròn. Đường thẳng CO cắt đường tròn tại hai điểm A và B ( A nằm giữa C và O). Kẻ tiếp tuyến CM đến đường tròn ( M là tiếp điểm). Tiếp tuyến của đường tròn (O) tại A cắt CM tại E và tiếp tuyến của đường tròn (O) tại B cắt CM tại F.a./ Chứng minh tứ giác AOME nội tiếp đường tròn.b./ Chứng minh và CE.MF=CF.MEc./ Tìm...
Đọc tiếp

1. Cho đường tròn (O) có bán kính R và điểm C nằm ngoài đường tròn. Đường thẳng CO cắt đường tròn tại hai điểm A và B ( A nằm giữa C và O). Kẻ tiếp tuyến CM đến đường tròn ( M là tiếp điểm). Tiếp tuyến của đường tròn (O) tại A cắt CM tại E và tiếp tuyến của đường tròn (O) tại B cắt CM tại F.
a./ Chứng minh tứ giác AOME nội tiếp đường tròn.
b./ Chứng minh và CE.MF=CF.ME
c./ Tìm điểm N trên đường tròn (O) (N khác M) sao cho tam giác NEF có diện tích lớn nhất. Tính diện tích lớn nhất đó theo R, biết góc AOE =30 độ

2. Hai đơn vị bộ đội cùng một lúc đi từ hai địa điểm A và B để gặp nhau. Đơn vị đi từ A mỗi giờ đi được 4km. Đơn vị đi từ B mỗi giờ đi được 5km. Một người liên lạc đi xe đạp với vận tốc 12km/h lên đường cùng một lúc với các đơn vị bộ đội, bắt đầu từ A để gặp đơn vị đi từ B. Khi gặp đơn vị này rồi, người liên lạc lặp tức quay về gặp đơn vị đi từ A và khi gặp đơn vị này rồi lặp tức quay về để gặp đơn vị đi từ B và cứ như thế đến khi hai đơn vị gặp nhau. Biết rằng AB dài 27km. Tính quãng đường liên lạc đã đi.

3. Cho nửa đường tròn tâm O và đường kính AB. Lấy điểm M thuộc đoạn thẳng OA, điểm N thuộc nửa đường tròn (O). Từ A và B vè các tiếp tuyến ax và by. Đường thẳng qua N và vuông góc với NM cắt Ax, By thứ tự tại C và D.
a) Chứng minh ACNM và BDNM là các tứ giác nội tiếp đường tròn
b) Chứng minh tam giác ANB đồng dạng với tam giác CMD
c) Gọi I là giao điểm của An và CM. K là giao điểm của BN và DM. Chứng minh IK // AB 

4. Quãng đường AB dài 120km. Một ô tô khởi hành từ A đi đến B và một mô tô khởi hành từ B đi đến A cùng lúc. Sau khi gặp nhau tại điểm C, ô tô chạy thêm 20 phút nữa thì đến B, còn mô tô chạy thêm 3 giờ nữa thì đến A. Tìm vận tốc của ô tô và vận tốc của mô tô

0
Bài 1: Cho AB là đường kính của đường tròn (O;R). C là 1 điểm thay đổi trên đường tròn.Kẻ CH vuông góc vớiGọi I là trung điểm của AC,OI cắt tiếp tuyến tại A của đường tròn tại M,MB cắt CH tại KXác định vị trí của C để chu vi tam giác ACB đạt GTLN?tìm GTLN đó theo RBài 2: Cho đường tròn (O;R) và đường thẳng d không có điểm chung với đường tròn. M là 1 điểm thuộc dt d . Qua M kẻ...
Đọc tiếp

Bài 1: Cho AB là đường kính của đường tròn (O;R). C là 1 điểm thay đổi trên đường tròn.Kẻ CH vuông góc với
Gọi I là trung điểm của AC,OI cắt tiếp tuyến tại A của đường tròn tại M,MB cắt CH tại K
Xác định vị trí của C để chu vi tam giác ACB đạt GTLN?tìm GTLN đó theo R
Bài 2: Cho đường tròn (O;R) và đường thẳng d không có điểm chung với đường tròn. M là 1 điểm thuộc dt d . Qua M kẻ tiếp tuyến MA,MB với đường tròn. Hạ OH vuông góc với d tại H.Nối Ab cắt OM tại I,OH tại K.Tia OM cắt đường tròn (O;R) tại E
Cm: E là tâm đường tròn nội tiếp tam giác MAB
Tìm vị trí của M trên đường thẳng d để diện tích tam giác OIK có diên tích lớn nhất
Bài 3 :cho 3 điểm a,b,c cố định nằm trên đường thẳng d(b nằm giữa a và c) .Vẽ đường tròn (0) cố định luôn đi qua B và C (0 là không nằm trên đường thẳng D ).Kẻ AM,AN là các tiếp tuyến với (0) tại M ,N .gọi I là trung điểm của BC,OA cắt MN tại H cắt (0) tại P và Q ( P nằm giữa A và O).BC cắt MN tại K
a.CM: O,M,N,I cùng nằm trên 1 đường tròn
b.CM điểm K cố định
c.Gọi D là trung điểm của HQ.Từ H kẻ đường thẳng vuông góc MD cắt MP tại E
d.Cm: P là trung điểm của ME
Bài 4:Cho đường tròn (O;R) đường kính CD=2R. M là 1 điểm thay đổi trên OC . Vẽ đường tròn (O') đường kính MD. Gọi I là trung điểm của MC,đường thẳng qua I vuông góc với CD cắt (O) tại E,F. đường thẳng ED cắt (O') tại P
a.Cm 3 điểm P,M,F thẳng hàng
b.Cm IP là tiếp tuyến của đường tròn (O;R)
c.Tìm vị trí của M trên OC để diện tích tam giác IPO lớn nhất

1

Bài 4:

a: 

Xét (O) có

ΔCED nội tiếp

CD là đường kính

=>ΔCED vuông tại E

ΔOEF cân tại O

mà OI là đường cao

nên I là trung điểm của EF

Xét tứ giác CEMF có

I là trung điểm chung của CM và EF

CM vuông góc EF

=>CEMF là hình thoi

=>CE//MF

=<MF vuông góc ED(1)

Xét (O') có

ΔMPD nội tiêp

MD là đường kính

=>ΔMPD vuông tại P

=>MP vuông góc ED(2)

Từ (1), (2) suy ra F,M,P thẳng hàng

b: góc IPO'=góc IPM+góc O'PM

=góc IEM+góc O'MP

=góc IEM+góc FMI=90 độ

=>IP là tiếp tuyến của (O')

14 tháng 7 2020

a) Ta có \(IM//AE\)suy ra \(\widehat{MIH}=\widehat{EAH}\). Mà \(\widehat{EAH}=\widehat{ECH}\)nên \(\widehat{MIH}=\widehat{MCH}\). Suy ra tứ giác CIMH nội tiếp.

Dễ dàng chỉ ra được ED là tiếp tuyến của \(\left(O\right)\)suy ra \(\widehat{HED}=\widehat{HCE}\)\(\left(1\right)\)

Do tứ giác CIMH nội tiếp nên \(\widehat{CHM}=90^0\)suy ra \(\widehat{HCM}+\widehat{HMC}=90^0\)

Mà \(\widehat{HMD}+\widehat{HMC}=90^0\)nên \(\widehat{HCM}=\widehat{HMD}\)\(\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\)suy ra \(\widehat{HED}=\widehat{HMD}\)nên tứ giác EMHD nội tiếp. Do đó \(\widehat{HDM}=\widehat{HEM}\)mà \(\widehat{HEM}=\widehat{HCD}\)nên \(\widehat{HDM}=\widehat{HCD}\)

Từ đó chứng minh được BD là tiếp tuyến của \(\left(O_1\right)\)

b) Sử dụng tính chất đường nối tâm vuông góc với dây chung ta có: \(OO_2\perp HE,O_2O_1\perp HD\)và do \(EH\perp HD\)suy ra \(OO_2\perp O_2O_1\)

Dễ thấy \(\widehat{COM}=45^0\)suy ra \(\widehat{CAE}=45^0\)nên \(\widehat{O_2OO_1}=45^0\)\(\Delta O_2OO_1\)vuông cân tại \(O_2\)

Tứ giác OCDE là hình vuông cạnh R và \(O_2\) là trung điểm của DE nên ta tính được \(O_2O^2=\frac{5R^2}{4}\)

.Vậy diện tích \(\Delta O_2OO_1\)  là\(\frac{5R^2}{8}\)