Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔOAM vuông tại A và ΔOBN vuông tại B có
OA=OB
góc AOM=góc BON
Do đó: ΔOAM=ΔOBN
b: Xét ΔKMN có
KO vừa là đường cao, vừa là trung tuyến
nên ΔKMN cân tại K
Xét ΔOBN vuông tại B và ΔOIM vuông tại I có
ON=OM
góc BNO=góc IMO
Do đó: ΔOBN=ΔOIM
=>OI=OB=R
=>MK là tiếp tuyến của (O)
chỉnh lại đề là.AH cắt đường tròn O tại D
a.AH vuông góc với OM tại H cắt đướng tròn tại D nên theo hệ thức liên hệ giữa đường nối tâm là dây
thì D là tiếp điểm thứ 2 của M tới D
vậy góc ODM=90
Xét AMDO có: góc ODM=90; góc OAM=90
Vậy AMDO nội tiếp(theo dấu hiệu nhận biết)
Ta có hình vẽ sau:
O A B C E D F
a)Vì các tiếp tuyến AB, AC của (O) có B,C ∈ (O) nên \(\widehat{ABO}=\widehat{OCA}=90^o\)
Xét tứ giác OBAC có: \(\widehat{ABO}+\widehat{OCA}=90^o+90^o=180^o\)
\(\widehat{ABO}\) và \(\widehat{OCA}\) đối nhau
➤ Tứ giác OBAC nội tiếp đường tròn đường kính OA
b) Vì góc nội tiếp \(\widehat{BDE}\) chắn \(\stackrel\frown{BE}\); \(\widehat{ABE}\) được tạo bởi tiếp tuyến AB và chắn \(\stackrel\frown{BE}\) nên
\(sđ\dfrac{\stackrel\frown{BE}}{2}=sđ\widehat{ABE}=sđ\widehat{BDE}\) trong khi E ∈ AD
▲ABE và ▲ADB có: \(\widehat{ABE}=\widehat{BDA}\)(cmtrên)
\(\widehat{A}\) là góc chung
⇒▲ABE ∼ ▲ADB(g-g) ⇔ \(\dfrac{AB}{AD}=\dfrac{AE}{AB}\Leftrightarrow AB^2=AD\cdot AE\)(điều phải chứng minh)
Vì ▲OAB vuông tại B nên ta có: \(AB^2+OB^2=OA^2\)(Định lý Pytago)
\(\Leftrightarrow AB^2=OA^2-OB^2=\left(3R\right)^2-R^2\) vì B∈(O)
\(=9R^2-R^2\\=8R^2 \)
Trong khi, \(AB^2=AD\cdot AE\)(cmtrên). ➤\(AD\cdot AE=8R^2\left(=AB^2\right)\)
Em kiểm tra lại đề câu d, điểm A đã cố định nên đề ko thể là xác định vị trí A được, chỉ có xác định vị trí d qua O sao cho diện tích tam giác kia min thôi
a: góc OBA+góc OCA=180 độ
=>OBAC nội tiếp đường tròn đường kính OA(1)
ΔOMN cân tại O
mà OH là trung tuyến
nên OH vuông góc MN
=>OH vuông góc HA
=>H nằm trên đường tròn đường kính OA(2)
Từ (1), (2) suy ra O,H,B,A,C cùng nằm trên đường tròn đường kính AO
b: Xét ΔABM và ΔANB có
góc ABM=góc ANB
góc BAM chung
=>ΔABM đồng dạng với ΔANB
=>AB/AN=AM/AB
=>AB^2=AN*AM
Xét ΔKCO vuông tại C và ΔKHA vuông tại H có
góc K chung
=>ΔKCO đồng dạng với ΔKHA
=>KC/KH=KO/KA
=>KC*KA=KO*KH
c: góc ABE+góc OBE=90 độ
góc CBE+góc OEB=90 độ
mà góc OBE=góc OEB
nên góc ABE=góc CBE
=>BE là phân giác của góc ABC
mà AE là phan giác góc BAC
nên E cách đều AB,BC,AC
a) Xét tứ giác ABOC có
\(\widehat{ABO}\) và \(\widehat{ACO}\) là hai góc đối
\(\widehat{ABO}+\widehat{ACO}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: ABOC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
1: góc ABO+góc ACO=180 độ
=>ABOC nội tiếp