Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y'=3ax^2-2\)
a/ Với \(a=\frac{1}{3}\Rightarrow y'=x^2-2\)
d: \(y=-\frac{1}{9}x+2\Rightarrow k=9\Rightarrow x_0^2-2=9\Rightarrow\left[{}\begin{matrix}x_0=\sqrt{11}\Rightarrow y_0=\frac{5\sqrt{11}}{3}\\x_0=-\sqrt{11}\Rightarrow y_0=-\frac{5\sqrt{11}}{3}\end{matrix}\right.\)
Phương trình tiếp tuyến:
\(\left[{}\begin{matrix}y=9\left(x-\sqrt{11}\right)+\frac{5\sqrt{11}}{3}\\y=9\left(x+\sqrt{11}\right)-\frac{5\sqrt{11}}{3}\end{matrix}\right.\) bạn tự rút gọn
b/ Gọi tiếp tuyến tại \(x_0\) có dạng:
\(y=\left(3ax_0^2-2\right)\left(x-x_0\right)+ax_0^3-2x_0=\left(3ax_0^2-2\right)x-2ax_0^3\)
Do \(2x-y-10=0\) hay \(y=2x-10\) là tiếp tuyến nên:
\(\left\{{}\begin{matrix}3ax_0^2-2=2\\2ax_0^3=10\end{matrix}\right.\) \(\Rightarrow a=\frac{64}{675}\)
- Tiếp tuyến (d) tại điểm M của đồ thị (C) có hoành độ x 0 = 0 ⇒ y 0 = 3 .
- Ta có:
- Phương trình tiếp tuyến (d) tại điểm M của đồ thị (C) là:
- Xét phương trình hoành độ giao điểm của đồ thị (C) và đường thẳng d là nghiệm phương trình :
- Với x = -4 thì y = 9.(-4) – 15 = -51.
- Vậy N(- 4 ; -51) là điểm cần tìm.
Chọn C.
Hàm số này có tập xác định là R \ {0}
Từ đồ thị (H.7) dự đoán f(x) liên tục trên các khoảng (−∞;0), (0; +∞) nhưng không liên tục trên R. Thật vậy,
- Với x > 0, f(x) = x − 1 là hàm đa thức nên liên tục trên R do đó liên tục trên (0; +∞)
- Với x < 0, f(x) = 1 – x cũng là hàm đa thức nên liên tục trên R do đó liên tục trên (−∞; 0)
Dễ thấy hàm số gián đoạn tại x = 0 vì
- Giả sử Δx là số gia của đối số tại xo = 1. Ta có:
- Đường thẳng có hệ số góc bằng f'(1) = 1 có dạng:
y = 1.x + a hay y = x + a
Mà đường thẳng đó đi qua điểm M(1;1/2) nên có: 1/2 = 1 + a ⇒ a = 1/2 - 1 = -1/2
⇒ đường thẳng đi qua M và có hệ số góc bằng 1 là: y = x – 1/2
Ta có đồ thị như trên. Đường thẳng y = x – 1/2 tiếp xúc với đồ thị hàm số f(x) tại M
a, Hệ số góc của cát tuyến PQ là \(k_{PQ}=\dfrac{f\left(x\right)-f\left(x_0\right)}{x-x_0}\)
b, Khi \(x\rightarrow x_0\) thì vị trí của điểm \(Q\left(x;f\left(x\right)\right)\) trên đồ thị (C) sẽ tiến gần đến điểm \(P\left(x_0;f\left(x_0\right)\right)\) và khi \(x=x_0\) thì hai điểm này sẽ trùng nhau.
c, Nếu điểm Q di chuyển trên (C) tới điểm P mà \(k_{PQ}\) có giới hạn hữu hạn k thì cát tuyến PQ cũng sẽ tiến đến gần vị trí tiếp tuyến của đồ thị (C) tại điểm P. Vì vậy, giới hạn của cát tuyến QP sẽ là đường thẳng tiếp tuyến tại điểm P