Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M E
a) Xét tam giác: AMB và AMC có:
AM chung
BM=CM ( gt)
AB=AC ( tam giác ABC đều)
=> Tam giác AMB =Tam giác AMC (1)
b) Xét tam giác MBC vuông cân tại M
=> \(\widehat{MCB}=\frac{90^o}{2}=45^o\)
Tam giác ABC đều
=> \(\widehat{ACB}=60^o\)
=> \(\widehat{ACM}=\widehat{ACB}-\widehat{MCB}=60^o-45^o=15^o\)
\(\widehat{BCE}=\widehat{MCB}-\widehat{ECM}=45^o-30^o=15^o\)
=> \(\widehat{ACM}=\widehat{BCE}\)(2)
Từ (1) => \(\widehat{MAB}=\widehat{MAC}\) mà \(\widehat{MAB}+\widehat{MAC}=\widehat{BAC}=60^o\)
=> \(\widehat{MAB}=\widehat{MAC}=60^o:2=30^o\)
=> \(\widehat{EBC}=\widehat{MAC}\left(=30^o\right)\)(3)
Xét tam giác MCA và tam giác ECB
có: AC=CB ( tam giác ABC đều)
\(\widehat{ACM}=\widehat{BCE}\)( theo (2))
\(\widehat{EBC}=\widehat{MAC}\)( theo (3))
=> Tam giác MCA =Tam giác ECB
=> CM=CE
=> tam giác MEC cân
M A B C N 3 4 5 3 3
Câu c) Trên nửa mặt phẳng bờ AM không chứa điểm C dựng tam giác đều AMN
=> \(\widehat{AMN}=60^o\)
và NA=NM=AM
Ta có: \(\widehat{NAB}+\widehat{BAM}=\widehat{NAM}=60^o=\widehat{BAC}=\widehat{BAM}+\widehat{MAC}\)
=> \(\widehat{NAB}=\widehat{MAC}\)(1)
Xét tam giác NAB và tam giác MAC
có: AB=AC ( tam giác ABC đều)
NA=AM ( tam giác AMN đều)
\(\widehat{NAB}=\widehat{MAC}\)( theo (1))
=> Tam giác NAB=MAC
=> NB=MC
Suy ra: MN:BM:NB=MA:MB:MC=3:4:5
=> Tam giác NMB vuông tại M
=> \(\widehat{NMB}=90^o\)
=> \(\widehat{AMB}=\widehat{AMN}+\widehat{NMB}=60^o+90^o=150^o\)
trên nửa mặt phẳng bờ AM ko chứa điểm B dựng tam giác ADM zuông cân tại đỉnh A
ta có AD=MA=2cm
\(\widehat{AMD}=45^0;\widehat{DMC}=\widehat{AMC}-\widehat{AMD}=90^0\)
Xét tam giác ADC zà tam giác AMB có
\(\hept{\begin{cases}AD=AM\\AC=Ab\left(gt\right)\\\widehat{DAC}=\widehat{MAB}\end{cases}}\)(cùng phụ zới góc CAM , ( cái này là giải thích tại sao góc DAC= góc MAB nha)
=> 2 tam giác trên = nhau
=>\(DC=MB\)
tam giác AMD zuông tại A nên \(MD^2=MA^2+AD^2\)
=>\(MD^2=2^2+2^2=8\)
tam giác MDC zuông tại M nên
\(DC^2=MD^2+MC^2\Leftrightarrow3^2=8+MC^2=>MC=1\)
Câu 1: (bạn tự vẽ hình nhé)
a) Xét \(\Delta\)BAH và \(\Delta\)CAH :
AHB^ = AHC^ = 90o
AB = AC
ABH^ = ACH^
=> \(\Delta\)BAH = \(\Delta\)CAH (cạnh huyền _ góc nhọn) (2)
=> BH = CH (2 cạnh tương ứng) (1)
Mà BH + CH = BC
<=> 2 * BH = 6
BH = 3 (cm)
ABH^ = ACH^
Áp dụng định lý Py-ta-go vào \(\Delta\)ABH:
BH^2 + AH^2 = AB^2
AH^2 = AB^2 - BH^2 = 5^2 - 3^2 = 25 - 9 = 16 (cm)
\(\Rightarrow AH=\sqrt{16}=4\left(cm\right)\)
b) Từ (1) => AH là đường trung tuyến của \(\Delta\)BAC
=> A, G, H thẳng hàng.
c) Từ (2) => BAH^ = CAH^ hay BAG^ = CAG^
Xét \(\Delta\)BAG và \(\Delta\)CAG:
AB = AC
BAG^ = CAG^
AG chung
=> \(\Delta\)BAG = \(\Delta\)CAG (c.g.c)
=> ABG^ = ACG^ (2 góc tương ứng)
Câu hỏi của Nguyễn Hiếu Nhân - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
. M A B C N 1 1 1 2 2 2 2 3 3 1
Trên nửa mặt phẳng bờ AC lấy điểm N sao cho \(\widehat{A}_1=\widehat{A}_2\)và AM=AN
Xét tam giác AMB và tam giác ANC có:
AB=AC(tan giác ABC cân)
\(\widehat{A}_1=\widehat{A}_2\)
AM=AN
=> tam giác AMB= tam giác ANC(c-g-c)
=>\(\widehat{M}_1=\widehat{ANC}\);BM=NC
Mà BM<MC
=>NC<MC
Xét tam giác AMN có AM=AN =>tam giác AMN cân tại A
=>\(\widehat{M}_2=\widehat{N}_2\)(1)
Xét tam giác CNM có NC<MC
=>\(\widehat{M}_3< \widehat{N}_3\)(2)
Từ (1),(2)
=>\(\widehat{M}_2+\widehat{M}_3< \widehat{N}_2+\widehat{N}_3\)
=>\(\widehat{AMC}< \widehat{ANC}\)=>\(\widehat{ANC}>\widehat{AMC}\)
=>\(\widehat{AMB}>\widehat{AMC}\)(\(\widehat{ANC}=\widehat{AMB}\))
Trên nửa mặt phẳng bờ AC lấy điểm N sao cho ˆA1=ˆA2A^1=A^2và AM=AN
Xét tam giác AMB và tam giác ANC có:
AB=AC(tan giác ABC cân)
ˆA1=ˆA2A^1=A^2
AM=AN
=> tam giác AMB= tam giác ANC(c-g-c)
=>ˆM1=ˆANCM^1=ANC^;BM=NC
Mà BM<MC
=>NC<MC
Xét tam giác AMN có AM=AN =>tam giác AMN cân tại A
=>ˆM2=ˆN2M^2=N^2(1)
Xét tam giác CNM có NC<MC
=>ˆM3<ˆN3M^3<N^3(2)
Từ (1),(2)
=>ˆM2+ˆM3<ˆN2+ˆN3M^2+M^3<N^2+N^3
=>ˆAMC<ˆANCAMC^<ANC^=>ˆANC>ˆAMCANC^>AMC^
=>ˆAMB>ˆAMCAMB^>AMC^(ˆANC=ˆAMBANC^=AMB^)
Câu hỏi của Nguyễn Hiếu Nhân - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo tại đây nhé.