Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Xét (O) có
ΔKAB nội tiếp đường tròn(K,A,B\(\in\)(O))
AB là đường kính
Do đó: ΔKAB vuông tại K(Định lí)
\(\Leftrightarrow\widehat{AKB}=90^0\)
hay \(\widehat{HKB}=90^0\)
Xét tứ giác BKHC có
\(\widehat{HKB}\) và \(\widehat{HCB}\) là hai góc đối
\(\widehat{HKB}+\widehat{HCB}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: BKHC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
hay B,K,H,C cùng thuộc một đường tròn(đpcm)
Mình giải giúp câu a, b, cho bạn nhé bạn
a, tam giác ABK có : AB là đường kính ; K thuộc (O)
suy ra góc AKB = 90 độ
Xét tứ giác BCHK có : góc MCB + góc AKB = 90 độ + 90 độ = 180 độ
suy ra tứ giác BCHK nội tiếp đường tròn
b, xét tam giác ACH và tam giác AKB có ;
góc A chung
góc ACH = góc AKB = 90 độ
suy ra tam giác ACH đồng dạng với tam giác AKB (g. g)
suy ra AH/AB = AC/AK hay AH/2R = R chia 2/AK
khi và chỉ khi AH . AK = 2R . R/2 = R bình
vậy AH.AK= R bình
a: Xét (O) có
ΔAKB nội tiếp
AB là đường kính
=>ΔAKB vuông tại K
Xét tứ giác BKHI có
góc BKH+góc BIH=180 độ
=>BKHI là tứ giác nội tiếp
b: Xét ΔAHI vuông tại I và ΔABK vuông tại K có
góc HAI chung
=>ΔAHI đồng dạng với ΔABK
=>AH/AB=AI/AK
=>AH*AK=AI*AB=1/4*R^2
a) ta có \(\widehat{AMB}=\widehat{AKB}=90^0\)( góc nội tiếp chắn nửa (O)
=>\(\widehat{AKB}+\widehat{BIE}=90^0+90^0=180^0\)
=> Tứ giác IEKB nội tiếp đường tròn
b)+)Ta có \(AB\perp MN\)tại \(\widebat{AM}=\widebat{AN}\)
=>\(\widehat{AME}=\widehat{AKM}\)( 2 góc nội tiếp cùng chắn 2 cung bằng nhau)
tam giác AME zà tam giác AKM có\(\widehat{MAK}\)chung
\(\widehat{AME}=\widehat{AKM}\left(cmt\right)\)
=> tam giác AME = tam giác AKM(g.g)
=>\(\frac{AM}{AK}=\frac{AE}{AM}=AM^2=AE.AK\)
+) ta có \(\widehat{AMB}=90^0\)(góc nội tiếp chắn nửa đường tròn , áp dụng hệ thức lượng trong tam giác zuông có
\(MB^2=BỊ.AB\)
Dó đó\(AE.AK+BI.AB=MA^2+MB^2=AB^2=4R^2\)(do tam giác AMB zuông tại H )
c) ..........
Khi k là trung điểm cung MB thì KN+KB là lớn nhất. Và khi đó KN là đường kính của đường tròn (tam giác BMN là tam giác đều)- tổng ba đoạn bằng 4R