K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2017

Giải bài 9 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9

Do O là tâm đường tròn nội tiếp tam giác ABC nên O là giao điểm của ba đường phân giác của tam giác ABC.

Giải bài 9 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 9 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9

(hai cung bằng nhau căng hai dây bằng nhau).

Giải bài 9 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9 đều là các góc nội tiếp chắn Giải bài 9 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 9 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9

ΔOAB có Giải bài 9 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9 là góc ngoài của tam giác

Giải bài 9 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9

Từ (1) và (2) suy ra DB = DC = DO.

Vậy chọn đáp án D.

10 tháng 10 2017

Giải bài 9 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9

Do O là tâm đường tròn nội tiếp tam giác ABC nên O là giao điểm của ba đường phân giác của tam giác ABC.

Giải bài 9 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 9 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9

(hai cung bằng nhau căng hai dây bằng nhau).

Giải bài 9 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9 đều là các góc nội tiếp chắn Giải bài 9 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 9 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9

ΔOAB có Giải bài 9 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9 là góc ngoài của tam giác

Giải bài 9 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9

Từ (1) và (2) suy ra DB = DC = DO.

Vậy chọn đáp án D.

25 tháng 4 2017

Hướng dẫn làm bài:

Vì AC vad BC tiếp xúc với đường tròn (O), AD đi qua O nên ta có:

ˆCAD=ˆBAD=αCAD^=BAD^=α (vì tâm đường tròn nội tiếp trong tam giác là giao điểm của ba đường phân giác trong tam giác)

⇒ cung CD = cung DB ⇒CD = DB (*)

Tương tự, CO là tia phân giác của góc C nên:

ˆACO=ˆBCO=βACO^=BCO^=β

Mặt khác: ˆDCO=ˆDCB+ˆBCO=α+β(1)(doˆBAD=ˆBCDDCO^=DCB^+BCO^=α+β(1)(doBAD^=BCD^

Ta có: ˆCODCOD^ là góc ngoài của ∆ AOC nên

ˆCOD=ˆOAC+ˆOCA=β+α(2)COD^=OAC^+OCA^=β+α(2)

Từ (1) và (2) ta có: ˆOCD=ˆCODOCD^=COD^

Vậy ∆DOC cân tại D (**)

Từ (*) và (**) suy ra CD = OD = BD

Chọn đáp án D

25 tháng 4 2017

Giải bài 9 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9Giải bài 9 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9

2 tháng 6 2018

O A B C H D I K E F

b) Ta thấy (O) giao (I) tại 2 điểm B và D => BD vuông góc OI (tại K) => ^OKB=900.

Xét đường tròn (I) đường kính AB có H thuộc cung AB => AH vuông góc HB hay AH vuông góc BC (1) 

AB và AC là 2 tiếp tuyến của (O) => \(\Delta\)ABC cân tại A. Mà AO là phân giác ^BAC

=> AO vuông góc BC (2)

Từ (1) và (2) => A;H;O thẳng hàng => ^OHB=900.

Xét tứ giác BOHK: ^OKB=^OHB=900 => Tứ giác BOHK nội tiếp đường tròn đường kính OB

=> ^OKH = ^OBH. Lại có ^OBH=^OAB (Cùng phụ ^HBA) => ^OKH = ^OAB

Hay ^OKH = ^HAI. Mà ^OKH + ^KHI = 1800 nên ^HAI + ^KHI = 1800

=> Tứ giác AIKH nội tiếp đường tròn (đpcm).

b) Dễ thấy OI là trung trực của BD và OI cắt BD tại K => K là trung điểm của BD

\(\Delta\)ABC cân đỉnh A có đường phân giác AH => H là trung điểm BC

Từ đó suy ra HK là đường trung bình của \(\Delta\)BDC

=> HK//CD => ^HKD + ^CDK = 1800 (3). Đồng thời \(\frac{HK}{CD}=\frac{1}{2}\)

Tương tự KI là đường trg bình của \(\Delta\)BAD => KI//AD => ^DKI + ^ADK = 1800 (4) Và \(\frac{IK}{AD}=\frac{1}{2}\)

Cộng (3) với (4) => ^KHD + ^KDI + ^CDK + ^ ADK = 3600

<=> ^HKI = 3600 - (^CDK + ^ADK) => ^HKI = ^CDA.

Xét \(\Delta\)HKI và \(\Delta\)CDA: ^HKI=^CDA; \(\frac{HK}{CD}=\frac{IK}{AD}=\frac{1}{2}\)=> \(\Delta\)HKI ~ \(\Delta\)CDA (c.g.c)

=> ^HIK = ^CAD. Mặt khác: ^CAD = ^DBE (Cùng chắn cung DE) => ^HIK=^DBE.

Mà tứ giác AIKH nội tiếp đường tròn => ^HIK=^HAK = >^DBE=^HAK hay ^KBF=^FAK

=> Tứ giác BKFA nội tiếp đường tròn => Đường tròn ngoại tiếp tam giác ABF đi qua điểm K (đpcm).

15 tháng 12 2017

O A B C D E H F

a) Do D thuộc đường tròn (O), AB là đường kính nên \(\widehat{BDC}=90^o\Rightarrow BD\perp AC\)

Xét tam giác vuông ABC, đường cao BD ta có:

\(AB^2=AD.AC\)  (Hệ thức lượng)

b) Xét tam giác BEC có O là trung điểm BC; OH // CE nên OH là đường trung bình của tam giác. Vậy nên H là trung điểm BE.

Ta có OH // CE mà CE vuông góc AB nên \(OH\perp BE\)

Xét tam giác ABE có AH là trung tuyến đồng thời đường cao nên nó là tam giác cân.

Hay AB = AE.

Từ đó ta có \(\Delta ABO=\Delta AEO\left(c-c-c\right)\Rightarrow\widehat{OEA}=\widehat{OBA}=90^o\)

Vậy AE là tiếp tuyến của đường tròn (O)

c) Xét tam giác vuông OBA đường cao BH, ta có:

\(OB^2=OH.OA\) (Hệ thức lượng)

\(\Rightarrow OC^2=OH.OA\Rightarrow\frac{OH}{OC}=\frac{OC}{OA}\)

Vậy nên \(\Delta OHC\sim\Delta OCA\left(c-g-c\right)\Rightarrow\widehat{OHC}=\widehat{OCA}\)

d) Ta thấy \(\widehat{OCF}=\widehat{FCE}\left(=\widehat{OFC}\right)\)

Lại có \(\widehat{OCH}=\widehat{ACE}\left(=\widehat{OAC}\right)\)

Nên \(\widehat{HCF}=\widehat{FCA}\) hay CF là phân giác góc HCA.

Xét tam giác HCA, áp dụng tính chất đường phân giác trong tam giác, ta có:

\(\frac{HF}{FA}=\frac{HC}{CA}\Rightarrow FA.HC=HF.CA\left(đpcm\right)\)

15 tháng 12 2017

ở phần c còn cạnh nào nữa để 2 tam giác đấy đồng dạng vậy cậu

28 tháng 2 2019

E C A D B

Ta có: tỨ giác OCEA nội tiếp

=> \(\widehat{OCA}=\widehat{OEA}\)(1)

Vì OC=OB 

=> Tam giác OBC cân 

=> \(\widehat{OCA}=\widehat{OCB}=\widehat{OBC}\)(2)

Tứ giác ODAB nội tiếp

=> \(\widehat{ODA}=\widehat{OBC}\)( cùng bù với góc OBA) (3)

Từ (1), (2), (3)

=> \(\widehat{ODA}=\widehat{OEA}\)

=> Tam giác ODE cân có OA là đươngcao

=> OA là đường trung tuyến

=> A là trung điểm của DE