K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2017

Hình vẽ:

A B C E D O

Giải:

a) Xét \(\Delta ABD\)\(\Delta ACE\), có:

\(\widehat{ADB}=\widehat{AEC}=90^0\left(gt\right)\)

\(\widehat{BAC}\) chung

\(AB=AC\left(gt\right)\)

\(\Rightarrow\Delta ABD=\Delta ACE\left(ch-gn\right)\)

b) Vì \(\Delta ABD=\Delta ACE\) (câu a)

\(\Rightarrow BD=CE\) (Hai cạnh tương ứng)

c) Ta có: \(AB=AC\left(gt\right)\)

\(AE=AD\left(\Delta ABD=\Delta ACE\right)\)

Lấy vế trừ vế, ta được:

\(\Leftrightarrow AB-AE=AC-AD\)

\(\Leftrightarrow BE=CD\)

Xét \(\Delta OEB\)\(\Delta ODC\), ta có:

\(BE=CD\) (Chứng minh trên)

\(\widehat{OEB}=\widehat{ODC}=90^0\left(gt\right)\)

\(\widehat{EBO}=\widehat{DCO}\) (\(\Delta ABD=\Delta ACE\))

\(\Rightarrow\Delta OEB=\Delta ODC\) (cạnh góc vuông _ góc nhọn kề)

d) Có BD và CE là đường cao của tam giác ABC

Mà BD cắt CE tại O

=> O là trực tâm của tam giác ABC

=> AO là đường cao thứ ba của tam giác ABC

Mà tam giác ABC là tam giác cân tại A (AB = AC)

=> AO đồng thời là tia phân giác của \(\widehat{BAC}\).

11 tháng 12 2016

Ta có hình vẽ:

A B C D E O

a/ Xét tam giác BEC và tam giác CDB có:

\(\widehat{BEC}\)=\(\widehat{CDB}\)=900 (GT)

BC: cạnh chung

\(\widehat{B}\)=\(\widehat{C}\) (vì tam giác ABC cân có AB = AC)

Vậy tam giác BEC = tam giác CDB

(theo trường hợp cạnh huyền góc nhọn)

=> BD = CE (2 cạnh tương ứng)

b/ Ta có: BE = CD (vì tam giác BEC = tam giác CDB) (1)

\(\widehat{E}\)=\(\widehat{D}\) = 900 (2)

Ta có: \(\widehat{EOB}\)=\(\widehat{DOC}\) (đối đỉnh) (*)

\(\widehat{E}\)=\(\widehat{D}\)=900 (**)

Mà tổng 3 góc trong tam giác bằng 1800 (***)

Từ (*),(**),(***) => \(\widehat{EBO}\)=\(\widehat{DCO}\) (3)

Từ (1),(2),(3) => tam giác OEB = tam giác ODC

c/ Xét tam giác AEO và tam giác ADO có:

AO: cạnh chung

\(\begin{cases}AB=AC\left(GT\right)\\EB=DC\end{cases}\)\(\Rightarrow\)AE = AD

EO = DO (vì tam giác OEB = tam giác ODC)

Vậy tam giác AEO = tam giác ADO (c.c.c)

=> \(\widehat{EAO}\)=\(\widehat{DAO}\) (2 góc tương ứng)

=> AO là tia phân giác \(\widehat{BAC}\) (đpcm)

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có 

AB=AC

\(\widehat{BAD}\) chung

Do đó: ΔABD=ΔACE

Suy ra:BD=CE

b: Xét ΔAEO vuông tại E và ΔADO vuông tại D có

AO chung

AE=AD

Do đó: ΔAEO=ΔADO

Suy ra: OE=OD

c: Ta có: OE+OC=EC

OD+OB=DB

mà EC=DB

và OE=OD

nên OC=OB

d: Xét ΔABO và ΔACO có

AB=AC
BO=CO

AO chung

Do đó: ΔABO=ΔACO

Suy ra: \(\widehat{BAO}=\widehat{CAO}\)

hay AO là tia phân giác của góc BAC

9 tháng 10 2019

A B C E D

Xét \(\Delta BEC\) và \(\Delta CDB\) có :

\(\widehat{BEC}=\widehat{CDB}=90^o\left(gt\right)\)

BC : cạnh chung 

\(\widehat{B}=\widehat{C}\) ( vì \(\Delta ABC\) có AB = AC \(\Rightarrow\) \(\Delta ABC\) cân tại A )

\(\Rightarrow\Delta BEC=\Delta CDB\)(cạnh huyền - góc nhọn )

\(\Rightarrow BD=CE\)

b ) Vì \(\Delta BEC=\Delta CDB\left(cmt\right)\)

\(\Rightarrow BE=CD\)

Có : \(AB=AE+BE\)

\(AC=AD+DC\) 

Mà AB = AC (gt) ; BE = CD (cmt)
\(\Rightarrow AE=AD\)

Xét \(\Delta AOE\) và \(\Delta AOD\) có :
\(AE=AD\left(cmt\right)\)

  \(\widehat{AEO}=\widehat{ADO}=90^o\left(gt\right)\)

OA : cạnh chung 

\(\Rightarrow\Delta AOE=\Delta AOD\) ( cạnh huyền - cạnh góc vuông )

\(\Rightarrow OE==OD\)

c ) Vì \(\Delta BEC=\Delta CDB\) (cmt)

\(\Rightarrow\widehat{BCE}=\widehat{CBD}\)

\(\Rightarrow\Delta AOB\) cân tại O

\(\Rightarrow OB=OC\)

d ) Vì \(\Delta AOE=\Delta AOD\left(cmt\right)\)

\(\Rightarrow\widehat{OAE}=\widehat{OAD}\)

\(\Rightarrow AO\) là tia phân giác của góc BAC

Chúc bạn học tốt !!!

11 tháng 12 2016

A B C E D

a)Xét ΔBEC và ΔCDB có:

\(\widehat{BEC}=\widehat{CDB}=90^o\) (gt)

BC: cạnh chung

\(\widehat{B}=\widehat{C}\) ( vì ΔABC có AB=AC=> ΔABC cân tại A)

=> ΔBEC =ΔCDB( cạnh huyền- góc nhọn)

=> BD=CE

b)Vì ΔBEC=ΔCDB 9cmt)

=> BE=CD

Có : AB=AE+BE

AC=AD+DC

Mà AB=AC(gt) ; BE=CD(cmt)

=>AE=AD

Xét ΔAOE và ΔAOD có:

AE=AD(cmt)

\(\widehat{AEO}=\widehat{ADO}=90^o\left(gt\right)\)

OA: cạnh chung

=> ΔAOE=ΔAOD (cạnh huyenf - cạnh góc vuông)

=> OE=OD

c) Vì ΔBEC=ΔCDB (cmt)

=> \(\widehat{BCE}=\widehat{CBD}\)

=> ΔOBC cân tại O

=> OB=OC

d)Vì ΔAOE=ΔAOD(cmt)

=> \(\widehat{OAE}=\widehat{OAD}\)

=> AO là tia pg của goac BAC

11 tháng 12 2016

Ta có hình vẽ sau:

 

1 2 B A C E D O 1 2

a) Xét ΔABD và ΔACE có:

\(\widehat{A}\) : Chung

AB = AC (gt)

\(\widehat{ADB}=\widehat{AEC}=90^o\) (gt)

=> ΔABD = ΔACE (g.c.g)

=> BD = CE (2 cạnh tương ứng) (đpcm)

b) Vì ΔABD = ΔACE (ý a)

=> AD = AE(2 cạnh tương ứng)

mà AB = AC (gt)

=> EB = ED

\(\widehat{EBD}=\widehat{DCE}\) (2 góc tương ứng)

Xét ΔOEB và ΔODC có:

\(\widehat{OEB}=\widehat{ODC}=90^o\) (gt)

EB = ED (cm trên)

\(\widehat{EBD}=\widehat{DCE}\) (cm trên)

=> ΔOEB = ΔODC (g.c.g)

=> OE = OD(2 cạnh tương ứng) (đpcm)

c) Vì ΔOEB = ΔODC (ý b)

=> OB = OC (2 cạnh tương ứng) (đpcm)

d) Vì ΔABD = ΔACE (ý a)

=> AD = AE(cạnh tương ứng)

Xét ΔAOE và ΔAOD có:

OE = OD (ý b)

\(\widehat{AEO}=\widehat{ADO}=90^o\) (gt)

AD = AE (cm trên)

=> ΔAOE = ΔAOD (c.g.c)

=> \(\widehat{A_1}=\widehat{A_2}\) (2 góc tương ứng)

=> AO là tia phân giác của \(\widehat{BAC}\) (đpcm)

 

 

 

26 tháng 12 2018

a) tam giác ABC có AB=AC (gt)

=> BD=CE

b)BD=CE (cmt)

=> OEB=ODC

c)vì O là giao điểm BD và CE (gt)

mà OEB=ODC 

=> AO là tia phân giác của BAC