Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có hình vẽ:
A B C D E O
a/ Xét tam giác BEC và tam giác CDB có:
\(\widehat{BEC}\)=\(\widehat{CDB}\)=900 (GT)
BC: cạnh chung
\(\widehat{B}\)=\(\widehat{C}\) (vì tam giác ABC cân có AB = AC)
Vậy tam giác BEC = tam giác CDB
(theo trường hợp cạnh huyền góc nhọn)
=> BD = CE (2 cạnh tương ứng)
b/ Ta có: BE = CD (vì tam giác BEC = tam giác CDB) (1)
\(\widehat{E}\)=\(\widehat{D}\) = 900 (2)
Ta có: \(\widehat{EOB}\)=\(\widehat{DOC}\) (đối đỉnh) (*)
\(\widehat{E}\)=\(\widehat{D}\)=900 (**)
Mà tổng 3 góc trong tam giác bằng 1800 (***)
Từ (*),(**),(***) => \(\widehat{EBO}\)=\(\widehat{DCO}\) (3)
Từ (1),(2),(3) => tam giác OEB = tam giác ODC
c/ Xét tam giác AEO và tam giác ADO có:
AO: cạnh chung
\(\begin{cases}AB=AC\left(GT\right)\\EB=DC\end{cases}\)\(\Rightarrow\)AE = AD
EO = DO (vì tam giác OEB = tam giác ODC)
Vậy tam giác AEO = tam giác ADO (c.c.c)
=> \(\widehat{EAO}\)=\(\widehat{DAO}\) (2 góc tương ứng)
=> AO là tia phân giác \(\widehat{BAC}\) (đpcm)
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE
Suy ra:BD=CE
b: Xét ΔAEO vuông tại E và ΔADO vuông tại D có
AO chung
AE=AD
Do đó: ΔAEO=ΔADO
Suy ra: OE=OD
c: Ta có: OE+OC=EC
OD+OB=DB
mà EC=DB
và OE=OD
nên OC=OB
d: Xét ΔABO và ΔACO có
AB=AC
BO=CO
AO chung
Do đó: ΔABO=ΔACO
Suy ra: \(\widehat{BAO}=\widehat{CAO}\)
hay AO là tia phân giác của góc BAC
A B C E D
Xét \(\Delta BEC\) và \(\Delta CDB\) có :
\(\widehat{BEC}=\widehat{CDB}=90^o\left(gt\right)\)
BC : cạnh chung
\(\widehat{B}=\widehat{C}\) ( vì \(\Delta ABC\) có AB = AC \(\Rightarrow\) \(\Delta ABC\) cân tại A )
\(\Rightarrow\Delta BEC=\Delta CDB\)(cạnh huyền - góc nhọn )
\(\Rightarrow BD=CE\)
b ) Vì \(\Delta BEC=\Delta CDB\left(cmt\right)\)
\(\Rightarrow BE=CD\)
Có : \(AB=AE+BE\)
\(AC=AD+DC\)
Mà AB = AC (gt) ; BE = CD (cmt)
\(\Rightarrow AE=AD\)
Xét \(\Delta AOE\) và \(\Delta AOD\) có :
\(AE=AD\left(cmt\right)\)
\(\widehat{AEO}=\widehat{ADO}=90^o\left(gt\right)\)
OA : cạnh chung
\(\Rightarrow\Delta AOE=\Delta AOD\) ( cạnh huyền - cạnh góc vuông )
\(\Rightarrow OE==OD\)
c ) Vì \(\Delta BEC=\Delta CDB\) (cmt)
\(\Rightarrow\widehat{BCE}=\widehat{CBD}\)
\(\Rightarrow\Delta AOB\) cân tại O
\(\Rightarrow OB=OC\)
d ) Vì \(\Delta AOE=\Delta AOD\left(cmt\right)\)
\(\Rightarrow\widehat{OAE}=\widehat{OAD}\)
\(\Rightarrow AO\) là tia phân giác của góc BAC
Chúc bạn học tốt !!!
A B C E D
a)Xét ΔBEC và ΔCDB có:
\(\widehat{BEC}=\widehat{CDB}=90^o\) (gt)
BC: cạnh chung
\(\widehat{B}=\widehat{C}\) ( vì ΔABC có AB=AC=> ΔABC cân tại A)
=> ΔBEC =ΔCDB( cạnh huyền- góc nhọn)
=> BD=CE
b)Vì ΔBEC=ΔCDB 9cmt)
=> BE=CD
Có : AB=AE+BE
AC=AD+DC
Mà AB=AC(gt) ; BE=CD(cmt)
=>AE=AD
Xét ΔAOE và ΔAOD có:
AE=AD(cmt)
\(\widehat{AEO}=\widehat{ADO}=90^o\left(gt\right)\)
OA: cạnh chung
=> ΔAOE=ΔAOD (cạnh huyenf - cạnh góc vuông)
=> OE=OD
c) Vì ΔBEC=ΔCDB (cmt)
=> \(\widehat{BCE}=\widehat{CBD}\)
=> ΔOBC cân tại O
=> OB=OC
d)Vì ΔAOE=ΔAOD(cmt)
=> \(\widehat{OAE}=\widehat{OAD}\)
=> AO là tia pg của goac BAC
Ta có hình vẽ sau:
1 2 B A C E D O 1 2
a) Xét ΔABD và ΔACE có:
\(\widehat{A}\) : Chung
AB = AC (gt)
\(\widehat{ADB}=\widehat{AEC}=90^o\) (gt)
=> ΔABD = ΔACE (g.c.g)
=> BD = CE (2 cạnh tương ứng) (đpcm)
b) Vì ΔABD = ΔACE (ý a)
=> AD = AE(2 cạnh tương ứng)
mà AB = AC (gt)
=> EB = ED
và \(\widehat{EBD}=\widehat{DCE}\) (2 góc tương ứng)
Xét ΔOEB và ΔODC có:
\(\widehat{OEB}=\widehat{ODC}=90^o\) (gt)
EB = ED (cm trên)
\(\widehat{EBD}=\widehat{DCE}\) (cm trên)
=> ΔOEB = ΔODC (g.c.g)
=> OE = OD(2 cạnh tương ứng) (đpcm)
c) Vì ΔOEB = ΔODC (ý b)
=> OB = OC (2 cạnh tương ứng) (đpcm)
d) Vì ΔABD = ΔACE (ý a)
=> AD = AE(cạnh tương ứng)
Xét ΔAOE và ΔAOD có:
OE = OD (ý b)
\(\widehat{AEO}=\widehat{ADO}=90^o\) (gt)
AD = AE (cm trên)
=> ΔAOE = ΔAOD (c.g.c)
=> \(\widehat{A_1}=\widehat{A_2}\) (2 góc tương ứng)
=> AO là tia phân giác của \(\widehat{BAC}\) (đpcm)
a) tam giác ABC có AB=AC (gt)
=> BD=CE
b)BD=CE (cmt)
=> OEB=ODC
c)vì O là giao điểm BD và CE (gt)
mà OEB=ODC
=> AO là tia phân giác của BAC
Hình vẽ:
A B C E D O
Giải:
a) Xét \(\Delta ABD\) và \(\Delta ACE\), có:
\(\widehat{ADB}=\widehat{AEC}=90^0\left(gt\right)\)
\(\widehat{BAC}\) chung
\(AB=AC\left(gt\right)\)
\(\Rightarrow\Delta ABD=\Delta ACE\left(ch-gn\right)\)
b) Vì \(\Delta ABD=\Delta ACE\) (câu a)
\(\Rightarrow BD=CE\) (Hai cạnh tương ứng)
c) Ta có: \(AB=AC\left(gt\right)\)
Và \(AE=AD\left(\Delta ABD=\Delta ACE\right)\)
Lấy vế trừ vế, ta được:
\(\Leftrightarrow AB-AE=AC-AD\)
\(\Leftrightarrow BE=CD\)
Xét \(\Delta OEB\) và \(\Delta ODC\), ta có:
\(BE=CD\) (Chứng minh trên)
\(\widehat{OEB}=\widehat{ODC}=90^0\left(gt\right)\)
\(\widehat{EBO}=\widehat{DCO}\) (\(\Delta ABD=\Delta ACE\))
\(\Rightarrow\Delta OEB=\Delta ODC\) (cạnh góc vuông _ góc nhọn kề)
d) Có BD và CE là đường cao của tam giác ABC
Mà BD cắt CE tại O
=> O là trực tâm của tam giác ABC
=> AO là đường cao thứ ba của tam giác ABC
Mà tam giác ABC là tam giác cân tại A (AB = AC)
=> AO đồng thời là tia phân giác của \(\widehat{BAC}\).