K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2019

giải

a, Trong tam giác ABC có: AB= 3cm( gt)

AC= 4cm ( gt)

BC = 5cm ( gt)

=> BC>AC>AB

==> Góc A > góc B > góc C ( quan hệ giữa góc và cạnh đối diện trong 1 tam giác)

b, Xét tam giác ABC có:

AB\(^2\)+ AC\(^2\)=3\(^2\)+4\(^2\)=25

BC\(^2\)=5\(^2\)= 25

==> AB\(^2\)+AC\(^2\)=BC\(^2\)

===> tam giác ABC là tam giác vuông ( vuông tại A) ( ĐL Py-ta-go đảo)

11 tháng 3 2019

A B C D H

Cm: a) Ta có: BA = BD => t/giác ABD là t/giác cân tại B

=> góc BAD = góc ADB = (1800 - góc B)/2 = (1800 - 600)/2 = 1200/2 = 600

Do góc B = góc BAD = góc ADB = 600

=> T/giác ABD là t/giác đều

b) Xét t/giác ABH và t/giác ADH

có AB = AC (vì t/giác ABD là t/giác đều)

  BH = DH (gt)

  AH : chung

=> t/giác ABH = t/giác ADH (c.c.c)

=> góc AHB = góc AHD (hai góc tương ứng)

Mà góc AHB + góc AHD = 1800 (kề bù)

hay 2. góc AHB = 1800

=> góc  AHB = 1800 : 2 = 900

=> AH \(\perp\)BD

c) Ta có: T/giác ABD là t/giác đều => AB = AD = BD

Mà BH = HD = BD/2 = 2/2 = 1

Xét t/giác ABH vuông tại H(áp dụng định lí Pi-ta-go)

Ta có: AB2 = AH2 + BH2 

=> AH2 = AB2 - BH2 = 22 - 12 = 4 - 1 = 3

Ta lại có: BH + HC = BC
=> HC = BC - BH = 5 - 1 = 4 

Xét t/giác AHC vuông tại H (áp dụng định lí Pi - ta - go)

Ta có: AC2 = AH2 + HC2 = 3 + 42 = 3 + 16 = 19

=> AC = \(\sqrt{19}\)

d) Xét t/giác ABC

Ta có: AB2 + AC2 = 22 + \(\sqrt{19}^2\)= 4 + 19 = 23

         BC2 = 52 = 25

=> AB + AC2 \(\ne\) BC2

=> t/giác ABC ko phải là t/giác vuông

=> góc BAC < 900 (vì 23 < 25)

16 tháng 4 2020

sao con người phải chết

a: AC-BC<AB<AC+BC

=>5<AB<8

mà AB>6

nên AB=7cm

b: AB-AC<BC<AB+AC

=>2<BC<14

mà BC<4

nên BC=3cm

AB+BC+AC=16

=>2AB+4=16

=>AB=6cm

=>AC=6cm

Vì AB=AC>BC

nên góc B=góc C>góc A

Bài 1:Cho ΔABC có AB=3cm,AC=4cm,BC=5cm                                                                                 Kẻ AH⊥BC                                                                                                                                                    a,cmr: ΔABC là Δ vuông                                                 ...
Đọc tiếp

Bài 1:Cho ΔABC có AB=3cm,AC=4cm,BC=5cm                                                                       
          Kẻ AH⊥BC                                                                                                                                                   
 a,cmr: ΔABC là Δ vuông                                                                                                                                                                
 b,Trên BC lấy D sao cho AB=BD                                                                                                                                                   
    Trên AC lấy E sao cho AE=AH                                                                                                                                                                                     
 cmr:AD là phân giác của góc HAD                                                                                                                                           
 c,cmr:DE⊥AC                                                                                                                                                                                 (nhớ vẽ hình giùm mình nha)

1

a: BC^2=AB^2+AC^2

=>ΔABC vuông tại A

b: góc BAD+góc EAD=90 độ

góc BDA+góc HAD=90 độ

mà góc BAD=góc BDA

nên góc EAD=góc HAD

=>AD là phân giác của góc HAC

c: Xét ΔAHD và ΔAED có

AH=AE

góc HAD=góc EAD

AD chung

=>ΔAHD=ΔAED

=>góc AED=góc AHD=90 độ

=>DE vuông góc AC

26 tháng 2 2020

A B C H D

Xét tam giác ABC có góc B > góc C suy ra AC > AB

Xét tam giác vuông ABH và tam giác vuông ACH

chung AH

có AC > AB (CMT)

suy ra HC > HB

c) Vì HC > HB (CMT)

Xét tam giác vuông BHD và tam giác vuông CHD

Có chung DH , BC >HB nên DC >DB

Xét tam giác BDC có DC > DB nên góc DBC > góc DCB

26 tháng 2 2020

Bài 16: 

A B C M D

Xét tam giác ABM và tam giác DCM

có AM=DM (GT)

góc AMB=góc DMC (đối đỉnh)

BM=MC (GT)

suy ra tam giác ABM=tam giác DCM (c.g.c)   (1)

b) Từ (1) suy ra góc MAB = góc MDC (hai góc tuơng ứng)

mà  góc MAB so le trong  góc MDC

suy ra AB // CD 

c) Từ (1) suy ra AB = CD

Xét tam giác ACD có AC + CD > AD

mà AD=2AM, AB=CD (CMT)

suy ra AC +AB >2AM

Vì ΔABC vuông tại A

==> BC2 = AC+AB2 ( Định lý Pitago )

       BC2 = 42 + 32 

       BC= 27

==> BC = √27

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=3^2+4^2=25\)

hay BC=5(cm)

Vậy: BC=5cm

a: AB<AC<BC
=>góc C<góc B<góc A

b: Xet ΔABC có

BC^2=AB^2+AC^2

=>ΔBCA vuông tại A

Xet ΔCAB vuông tại A và ΔCAD vuông tại A có

CA chung

AB=AD

=>ΔCAB=ΔCAD

c: Xét ΔCBD có

CA,BE là trung tuyến

CA cắt BE tại I

=>I là trọng tâm

=>DI đi qua trung điểm của BC