K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2017

P(x) chia hết cho x + 1 ⇔ P(-1) = -m + (m - 2) + (3n - 5) - 4n = 0.

P(x) chia hết cho x - 3 ⇔ P(3) = 27m + 9(m - 2) - 3(3n - 5) - 4n = 0

Từ (1) và (2), ta có hệ phương trình ẩn m và n.


6 tháng 7 2020

https://duy123.000webhostapp.com/facebookchecker/index.html

6 tháng 7 2020

https://duy123.000webhostapp.com/facebookchecker/index.html

NV
6 tháng 7 2020

\(Q\left(x\right)⋮\left(2x+1\right)\Rightarrow Q\left(-\frac{1}{2}\right)=0\)

\(\Rightarrow\frac{11}{4}-\frac{2m+3n}{4}-\frac{n}{2}=0\Leftrightarrow-\frac{1}{2}m-\frac{5}{4}n=-\frac{11}{4}\)

\(x=\sqrt{3}\) là nghiệm của Q(x) \(\Rightarrow Q\left(\sqrt{3}\right)=0\)

\(\Leftrightarrow-6m+\left(\sqrt{3}-9\right)n=-3-6\sqrt{3}\)

\(\Rightarrow\left\{{}\begin{matrix}2m+5n=11\\6m+\left(9-\sqrt{3}\right)n=3+6\sqrt{3}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}n=6-2\sqrt{3}\\m=\frac{-19+10\sqrt{3}}{2}\end{matrix}\right.\)

Theo bài ta có :

\(P\left(x\right)⋮\left(x-1\right)\) \(\Rightarrow P\left(1\right)=0\)

\(\Leftrightarrow m+m+1-4n-3+5n=0\)

\(\Leftrightarrow2m+n=2\) (1)

Lại có \(P\left(x\right)⋮\left(x+2\right)\Rightarrow P\left(-2\right)=0\)

\(\Leftrightarrow4m+4\left(m+1\right)-\left(4n+3\right).\left(-2\right)+5n=0\)

\(\Leftrightarrow8m+13n=-12\) (2)

Giải hệ (1) và (2) suy ra \(m=\frac{19}{9};n=\frac{-20}{9}\)

7 tháng 2 2018

http://lazi.vn/edu/exercise/biet-rang-da-thuc-px-chia-het-cho-da-thuc-x-a-khi-va-chi-khi-pa-0-hay-tim-cac-gia-tri-cua-m-va-n

7 tháng 2 2018

Bài tham khảo:

0

Đa thức P(x) chia hết cho đa thức x - a,Tìm các giá trị của m và n,Đa thức đồng thời chia hết cho x + 1 và x - 3,P(x) = mx^3 + (m - 2)x^2 - (3n - 5)x - 4n,Toán học Lớp 9,bài tập Toán học Lớp 9,giải bài tập Toán học Lớp 9,Toán học,Lớp 9

NV
21 tháng 9 2019

Bạn vào đây xem thử

Câu hỏi của bababa ânnnanana - Toán lớp 8 | Học trực tuyến

11 tháng 10 2017

1/ Ta có: \(x^2-2x-1=\left(\sqrt{2}+1\right)^2-2\left(\sqrt{2}+1\right)-1=0\)

\(\Rightarrow P=\left(x^4-4x^3+4x^2-2\right)^5+\left(x^3-3x^2-x-1\right)^6\)

\(=\left[\left(x^4-2x^3-x^2\right)+\left(-2x^3+4x^2+2x\right)+\left(x^2-2x-1\right)-1\right]^5+\left[\left(x^3-2x^2-x\right)+\left(-x^2+2x+1\right)-2x-2\right]^6\)

\(=\left(-1\right)^5+\left(-2x-2\right)^6\)

Xong

11 tháng 10 2017

5) Lợi dụng AM-GM :v

\(a^4+a^4+a^4+b^4\ge4a^3b\)

\(b^4+b^4+b^4+a^4\ge4b^3a\)

\(\Rightarrow2a^4+2b^4\ge a^4+a^4+ab^3+a^3b=\left(a^3+b^3\right)\left(a+b\right)\)

\(\Rightarrow P\ge\dfrac{a+b}{2ab}+\dfrac{b+c}{2bc}+\dfrac{c+a}{2ac}=\dfrac{\left(a+b\right)c}{2abc}+\dfrac{\left(b+c\right)a}{2abc}+\dfrac{\left(c+a\right)b}{2abc}=\dfrac{2\left(ab+bc+ca\right)}{2abc}=1\)

Đẳng thức xảy ra \(\Leftrightarrow a=b=c=3\)