cho đa thức sau
M= 5x\(^2\)-11xy+7y\(^2\)-(x\(^2\)+xy-2y\(^2\))
a, thu gọn M
b, chứng minh M\(\ge\)0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho đa thức sau
M= 5x\(^2\)-11xy+7y\(^2\)-(x\(^2\)+xy-2y\(^2\))
a, thu gọn M
b, chứng minh M\(\ge\)0
_______________Bài làm___________________
a, \(x^2+xy+y^2+1\)
\(=\left(x^2+2x\dfrac{y}{2}+\dfrac{y^2}{4}\right)+\dfrac{3y^2}{4}+1=\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^3}{4}+1\)
Do \(\left(x+\dfrac{y}{2}\right)^2\ge0\forall x,y\)
Và \(\dfrac{3y^2}{4}\ge0\forall y\)
Nên: \(\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1>0\forall x,y=>đpcm\)
b, \(x^2+5y^2+2x-4xy-10y+14\)
\(=\left(x^2-4xy+4y^2\right)+\left(2x-4y\right)+\left(y^2-6y+9\right)+5\)
\(=\left(x-2y\right)^2+2\left(x-2y\right)+\left(y-3\right)^2+5\)
\(=\left(x-2y+1\right)^2+\left(y-3\right)^2+4\)
Do \(\left(x-2y+1\right)^2\ge0\forall x,y\)
Và \(\left(y-3\right)^2\ge0\forall y\)
Nên \(\left(x-2y+1\right)^2+\left(y-3\right)^2+4>0\)
c, \(5x^2+10y^2-6xy-4x-2y+3\)
\(=\left(x^2-6xy+9y^2\right)+\left(4x^2-2x+1\right)+\left(y^2-2y+1\right)+1\)
\(=\left(x-3y\right)^2+\left(2x-1\right)^2+\left(y-1\right)^2+1\)
Do .........
tự làm ik
Lời giải:
a)
\(S=12(x^3+y^3)+16x^2y^2+34xy\)
\(=12[(x+y)^3-3xy(x+y)]+16x^2y^2+34xy\)
\(=12(1-3xy)+16x^2y^2+34xy=12+16x^2y^2-2xy\)
\(=(4xy-\frac{1}{4})^2+\frac{191}{16}\geq \frac{191}{16}\)
Dấu "=" xảy ra khi \(\left\{\begin{matrix} x+y=1\\ xy=\frac{1}{16}\end{matrix}\right.\Leftrightarrow (x,y)=(\frac{2+\sqrt{3}}{4}, \frac{2-\sqrt{3}}{4})\)
Vậy \(S_{\min}=\frac{191}{16}\) khi \(\Leftrightarrow (x,y)=(\frac{2+\sqrt{3}}{4}, \frac{2-\sqrt{3}}{4})\) và có hoán vị.
b)
\(A=5(x^3+y^3)+12xy+4x^2y^2\)
\(=5[(x+y)^3-3xy(x+y)]+12xy+4x^2y^2\)
\(=5(1-3xy)+12xy+4x^2y^2\)
\(=5+4x^2y^2-3xy\)
Áp dụng BĐT Cô-si: $1=x+y\geq 2\sqrt{xy}\Rightarrow xy\leq \frac{1}{4}$
$A=4x^2y^2-3xy+5=xy(4xy-1)-\frac{1}{2}(4xy-1)+4,5=(xy-\frac{1}{2})(4xy-1)+4,5$
Vì $xy\leq \frac{1}{4}\Rightarrow 4xy-1\leq 0; xy-\frac{1}{2}< 0\Rightarrow (xy-\frac{1}{2})(4xy-1)\geq 0$
$\Rightarrow A=(xy-\frac{1}{2})(4xy-1)+4,5\geq 4,5$
Vậy $A_{\min}=4,5$ khi $x=y=\frac{1}{2}$
Đùa game, đánh xong rồi ấn nhầm nút hủy :) ok im fine
Bài 1: Câu hỏi của nguyễn hà - Toán lớp 8 | Học trực tuyến
Bài 2:
a) \(B=\frac{3y^3-7y^2+5y-1}{2y^3-y^2-4y+3}\)
\(B=\frac{3y\left(y^2-2y+1\right)-\left(y^2-2y+1\right)}{2y\left(y^2-2y+1\right)+3\left(y^2-2y+1\right)}\)
\(B=\frac{\left(y-1\right)^2\left(3y-1\right)}{\left(y-1\right)^2\left(2y+3\right)}=\frac{3y-1}{2y+3}\)
b) \(\frac{2D}{2y+3}=\frac{2\left(3y-1\right)}{\left(2y+3\right)^2}\Leftrightarrow6y-2⋮\left(2y+3\right)^2\)
Dễ thấy tử số là số chẵn, mẫu số là số lẻ nên \(\frac{2D}{2y+3}\)không là số nguyên
Mặt khác vì mọi số nguyên đều chia hết cho 1 và -1
\(\Rightarrow\left[{}\begin{matrix}2y+3=1\\2y+3=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=-1\\y=-2\end{matrix}\right.\)
c) \(B>1\Leftrightarrow\frac{3y-1}{2y+3}>1\)
\(\Leftrightarrow3y-1>2y+3\)
\(\Leftrightarrow y>4\)
Vậy....
Bài 3:
a) Ta có: \(x^2+3x+3\)
\(=x^2+2\cdot x\cdot\frac{3}{2}+\frac{9}{4}+\frac{3}{4}\)
\(=\left(x+\frac{3}{2}\right)^2+\frac{3}{4}\)
Ta có: \(\left(x+\frac{3}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+\frac{3}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
Dấu '=' xảy ra khi \(\left(x+\frac{3}{2}\right)^2=0\Leftrightarrow x+\frac{3}{2}=0\Leftrightarrow x=\frac{-3}{2}\)
Vậy: Giá trị nhỏ nhất của biểu thức \(P=x^2+3x+3\) là \(\frac{3}{4}\) khi \(x=\frac{-3}{2}\)
b) Ta có: \(Q=x^2+2y^2+2xy-2y\)
\(=x^2+2xy+y^2+y^2-2y+1-1\)
\(=\left(x+y\right)^2+\left(y-1\right)^2-1\)
Ta có: \(\left(x+y\right)^2\ge0\forall x,y\)
\(\left(y-1\right)^2\ge0\forall y\)
Do đó: \(\left(x+y\right)^2+\left(y-1\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(x+y\right)^2+\left(y-1\right)^2-1\ge-1\forall x,y\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}\left(x+y\right)^2=0\\\left(y-1\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)
Vậy: Giá trị nhỏ nhất của biểu thức \(Q=x^2+2y^2+2xy-2y\) là -1 khi x=-1 và y=1
\(P\left(x\right)=48x^3-24x^2+3x+16x^2-8x+1\)
\(=3x\left(16x^2-8x+1\right)+16x^2-8x+1\)
\(=\left(3x+1\right)\left(16x^2-8x+1\right)\)
\(=\left(3x+1\right)\left(4x-1\right)^2\)
b/ \(\Leftrightarrow48x^3-8x^2\ge5x-1\)
\(\Leftrightarrow48x^3-8x^2-5x+1\ge0\)
\(\Leftrightarrow\left(3x+1\right)\left(4x-1\right)^2\ge0\) (luôn đúng \(\forall x\ge0\))
Dấu "=" xảy ra khi \(x=\frac{1}{4}\)
c/ Bạn chắc là ghi đề sai
\(6\left(a^3+b^3+c^3+d^3\right)-\left(a^2+b^2+c^2+d^2\right)\) mình ghi lại đề câu c rồi , sorry bạn nha
Ta có: \(\frac{x^2y+2xy^2+y^3}{2x^2+xy-y^2}\)
\(=\frac{x^2y+xy^2+xy^2+y^3}{2x^2+2xy-xy-y^2}\)
\(=\frac{xy\left(x+y\right)+y^2\left(x+y\right)}{2x\left(x+y\right)-y\left(x+y\right)}\)
\(=\frac{\left(x+y\right)\left(xy+y^2\right)}{\left(2x-y\right)\left(x+y\right)}=\frac{xy+y^2}{2x-y}\left(đpcm\right)\)
Ta có: \(\frac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}\)
\(=\frac{x^2+xy+2xy+2y^2}{x^2\left(x+2y\right)-y^2\left(x+2y\right)}\)
\(=\frac{x\left(x+y\right)+2y\left(x+y\right)}{\left(x^2-y^2\right)\left(x+2y\right)}\)
\(=\frac{\left(x+2y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)\left(x+2y\right)}=\frac{1}{x-y}\left(đpcm\right)\)
Bài 1:
\(\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ac}{b}\ge a+b+c\) với a,b,c > 0
Áp dụng BĐT Chauchy cho 2 số không âm, ta có:
\(\dfrac{bc}{a}+\dfrac{ac}{b}=c\left(\dfrac{b}{a}+\dfrac{a}{b}\right)\ge c\sqrt{\dfrac{b}{a}.\dfrac{a}{b}}=2c\)
\(\dfrac{ac}{b}+\dfrac{ab}{c}=a\left(\dfrac{c}{b}+\dfrac{b}{c}\right)\ge a\sqrt{\dfrac{c}{b}.\dfrac{b}{c}}=2a\)
\(\dfrac{ab}{c}+\dfrac{bc}{a}=b\left(\dfrac{a}{c}+\dfrac{c}{a}\right)\ge b\sqrt{\dfrac{a}{c}.\dfrac{c}{a}}=2b\)
Cộng vế theo vế ta được:
\(2\left(\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ac}{b}\right)\ge2\left(a+b+c\right)\)
\(\Leftrightarrow\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ac}{b}\ge a+b+c\)
nhầm sorry bạn
b, (m+4)2>= 16m
(=) m2+8m +16 -16m >= 0
(=)m2 -8m +16 >= 0
(=) (m+4)2>= 0
Ta có (m+4)2>= 0 với mọi m
Dấu "=" xảy ra (=) (m+4)2=0
(=) m +4 = 0
(=) m= -4
Vậy (m+4)2>= 16m dấu bằng xảy ra (=) m = -4
a, Ta có:
x2+y2/16 >= 1/2 xy
(=) x2-1/2xy +y2/16 >= 0
(=) x2- 2.x.1/4 . y + (y/4)2>= 0
(=) (x-y/4)2>= 0
Ta có
(x-y/4)2>= 0 với mọi x,y
Dấu "=" xảy ra khi (=) (x-y/4)2= 0
(=) x - y/4 =0
(=) 4x = y
Vậy x2+y2/16 >= 1/2 xy Dấu "=" xảy ra khi 4x = y.
b, Ta có:
(m+4)2> 16m
(=)m2+16m + 16 - 16m > 0
(=) m2+16 > 0
Ta có
m2>= 0 với mọi m
=> m2+16 > 0 với mọi m
Vậy (m+4)2> 16m
Chúc bạn học tốt.