Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có P(x) = 2 + 5x2 – 3x3 + 4x2 – 2x – x3 + 6x5.
a) Thu gọn P(x) = 2 + 9x2 – 4x3 - 2x + 6x5
Sắp xếp theo thứ tự giảm của biến:
P(x) = 6x5 – 4x3 + 9x2 – 2x + 2
b) Hệ số lũy thừa bậc 5 là 6
Hệ số lũy thừa bậc 3 là -4
Hệ số lũy thừa bậc 2 là 9
Hệ số lũy thừa bậc 1 là -2
Hệ số lũy thừa bậc 0 là 2.
\(A\left(x\right)=4x^3+12x-24x^2-2x^2+4x+17\)
\(=4x^3-26x^2+16x+17\)
Bậc là 3
Hệ số cao nhất là 6
Hệ số tự do là17
\(B\left(x\right)=5x^2-7x+3-2x^2+4x-8=3x^2-3x-5\)
Bậc là 2
Hệ số cao nhất là 3
Hệ số tự do là -5
a, f(x) = -2x\(^3\) + 7 - 6x + 5x\(^4\) - 2x\(^3\)
=5x\(^4\)+(-2x\(^3\)-2x\(^3\))-6x+7
=5x\(^4\)-4x\(^3\)-6x+7
g(x)= 5x\(^2\) + 9x - 2x\(^4\) - x\(^2\)+ 4x\(^3\) -12
=-2x\(^4\)+4x\(^3\)+(5x\(^2\)-x\(^2\))+9x-12
=-2x\(^4\)+4x\(^3\)+4x\(^2\)+9x-12
b,f(x)+g(x)=5x\(^4\)-4x\(^3\)-6x+7+-2x\(^4\)+4x\(^3\)+4x\(^2\)+9x-12
=(5x\(^4\)-2x\(^4\))+(-4x\(^3\)+4x\(^3\))+4x\(^2\)+(-6x+9x)+(7-12)
= 3x\(^4\)+4x\(^2\)+3x-5
F(\(x\)) = - 2\(x\)3 + 7 - 6\(x\) + 5\(x^4\) - 2\(x^3\)
F(\(x\)) = (-2\(x^3\) - 2\(x^3\)) + 7 - 6\(x\) + 5\(x^4\)
F(\(x\)) = -4\(x^3\) + 7 - 6\(x\) + 5\(x^4\)
F(\(x\)) = 5\(x^4\) - 4\(x^3\) - 6\(x\) + 7
G(\(x\)) = 5\(x^2\) + 9\(x\) - 2\(x^4\) - \(x^2\) + 4\(x^3\) - 12
G(\(x\)) = (5\(x^2\) - \(x^2\)) + 9\(x\) - 2\(x^4\) + 4\(x^3\) - 12
G(\(x\)) = 4\(x^2\) + 9\(x\) - 2\(x^4\) + 4\(x^3\) - 12
G(\(x\)) = -2\(x^4\) + 4\(x^3\) +4\(x^2\) + 9\(x\) - 12
b, F(\(x\)) + G(\(x\)) = 5\(x^4\) - 4\(x^3\) - 6\(x\) + 7 + ( -2\(x^4\) + 4\(x^3\)+4\(x^2\)+9\(x\)-12)
F(\(x\)) + G(\(x\)) = 5\(x^4\)- 4\(x^3\) - 6\(x\)+ 7 - 2\(x^4\) + 4\(x^3\) + 4\(x^2\) + 9\(x\) - 12
F(\(x\)) + G(\(x\)) = (5\(x^{4^{ }}\) -2\(x^4\)) -(4\(x^3\) - 4\(x^3\)) + 4\(x^2\) + (9\(x\)-6\(x\)) - ( 12 - 7)
F(\(x\)) + G(\(x\)) = 3\(x^4\) + 4\(x^2\) + 3\(x\) - 5
a) sắp xếp các hạng tử của P(x)theo luỹ thừa giảm dần của biến
P(x) = 2x4 - 5x2 - x4 + 6x3 - 4x - 5x2 - 6
P(x) = ( 2x4 - x4 ) + ( -5x2 - 5x2 ) + 6x3 - 4x - 6
P(x) = x4 - 10x2 + 6x3 - 4x - 6
P(x) = x4 + 6x3 - 10x2 - 4x - 6
b)Sắp xếp các hạng tử của P(x)theo luỹ thừa tăng dần của biến
P(x) = 2x4 - 5x2 - x4 + 6x3 - 4x - 5x2 - 6
P(x) = ( 2x4 - x4 ) + ( -5x2 - 5x2 ) + 6x3 - 4x - 6
P(x) = x4 - 10x2 + 6x3 - 4x - 6
P(x) = -6 - 4x - 10x2 + 6x3 +x4
a) \(A\left(x\right)=2x^4-5x^3-x^4-6x^2+5+5x^2-10+x\)
\(=\left(2x^4-x^4\right)-5x^3+\left(5x^2-6x^2\right)+x+\left(5-10\right)\)
\(=3x^4-5x^3-x^2+x-5\)
\(B\left(x\right)=-7-4x+6x^4+6+3x-x^3-3x^4\)
\(=\left(6x^4-3x^4\right)-x^3+\left(3x-4x\right)+\left(6-7\right)\)
\(=x^4-x^3-x-1\)
b) \(A\left(x\right)+B\left(x\right)\)
\(=\left(3x^4-5x^3-x^2+x-5\right)+\left(x^4-x^3-x-1\right)\)
\(=5x^4-6x^3-x^2-6\)
\(A\left(x\right)-B\left(x\right)\)
\(=\left(3x^4-5x^3-x^2+x-5\right)-\left(x^4-x^3-x-1\right)\)
\(=\left(3x^4-5x^3-x^2+x-5\right)-x^4+x^3+x+1\)
\(=2x^4-4x^3-x^2+2x-4\)
a, A(x) = -x3 -2x2 + 5x +7
B(x) = -3x4 + x3 +10x2 -7
b, P(x) = -3x4 +8x2 +5x
Q(x) = 3x4 - 2x2 -12x2 -5x + 14
c, Thay x=-1 vào đa thức P(x) :
P(-1) = -3.(-1)4 + 8.(-1)2 + 5.(-1)
=-3 + 8 - 5
=0
=> x = (-1) là nghiệm của đa thức P(x).
(dấu chấm"." là viết tắt của dấu nhân "x")
Nếu bạn thấy đúng thì nha ! Cảm ơn.
a, A ( x ) = -x3 - 2x2 + 5x + 7
B ( x ) = -3x4 + x3 + 10x2 -7
b, P ( x ) = -3x4 + 8x2 + 5x
Q ( x ) = 3x4 - 2x2 - 12x2 - 5x + 14
c, Ta thay x = -1 vào đa thức P ( x )
P ( -1 ) = -3 . ( -1 )4 + 8 . ( -1 )2 + 5 . ( -1 )
= -3 + + 8 - 5
= 0
=> x = ( -1 ) là nghiệm của đa thức P ( x )
\(a,P\left(x\right)=-4x^3+5-6x+x^4-5x^3+2x=x^4-\left(4x^3+5x^3\right)-\left(6x-2x\right)+5=x^4-9x^3-4x+5\)
\(b,P\left(-1\right)=\left(-1\right)^4-9.\left(-1\right)^3-4\left(-1\right)+5=1+9+4+5=19\\ P\left(2\right)=2^4-9.2^3-4.2+5=16-72-8+5=-59\)
a,sửa đề 2x
\(P\left(x\right)=x^4-7x^3-2x+5\)
b, \(P\left(-1\right)=1+7+2+5=15\)
\(P\left(2\right)=16-7.8-2.2+5=-39\)