K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có

\(F\left(0\right)=2016\)

\(\Leftrightarrow a\cdot0^2+b\cdot0+c=2016\)

\(\Leftrightarrow0+0+c=2016\)

\(\Leftrightarrow c=2016\)

\(F\left(1\right)=2016\)

\(\Leftrightarrow a\cdot1^2+b\cdot1+c=2017\)

\(\Leftrightarrow a+b+c=2017\)

\(\Leftrightarrow a+b+2016=2017\)

\(\Leftrightarrow a+b=1\)       \(\left(1\right)\)

\(F\left(-1\right)=2018\)

\(\Leftrightarrow a\cdot\left(-1\right)^2+b\cdot\left(-1\right)+c=2018\)

\(\Leftrightarrow a-b+c=2018\)

\(\Leftrightarrow a-b+2016=2018\)

\(\Leftrightarrow a-b=2\)       \(\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow a=\left(1+2\right)\div2=3\div2=1.5\)

\(\Rightarrow b=1-1.5=-0.5\)

Vậy \(F\left(x\right)=1.5x^2-0.5x+2016\)

\(\Leftrightarrow F\left(2\right)=1.5\cdot2^2-0.5\cdot2+2016\)

\(=1.5\cdot4-0.5\cdot2+2016\)

\(=6-1+2016=2021\)

Vậy \(F\left(2\right)=2021\)

nhớ k nha

20 tháng 7 2021

Bài 1 : 

\(P\left(0\right)=d=2017\)

\(P\left(1\right)=a+b+c+d=2\Rightarrow a+b+c=-2015\)(*)

\(P\left(-1\right)=-a+b-c+d=6\Rightarrow-a+b-c=6-2017=-2023\)(**)

\(P\left(2\right)=8a+4b+2c+d=-6033\Rightarrow8a+4b+2c=-8050\)

Lấy (*) + (**) ta được : \(2b=-4038\Rightarrow b=-2019\)

Thay vào (*) ta được \(a+c=4\)(***)

Lại có : \(8a+4b+2c=-8050\Rightarrow8a+2c=-8050+8076=26\)(****) 

(***) => \(8a+8c=32\)(*****)

Lấy (****) - (*****) => \(-6c=-6\Rightarrow c=1\Rightarrow a=3\)

Vậy  ....

20 tháng 7 2021

MỌI NGƯỜI GIÚP MÌNH VỚI MÌNH ĐANG CẦN GẤP LẮM Ạ.

20 tháng 7 2021

Bài 1 : làm tương tự với bài 2;3 nhé

Ta có : \(f\left(0\right)=c=2010;f\left(1\right)=a+b+c=2011\)

\(\Rightarrow f\left(1\right)=a+b=1\)

\(f\left(-1\right)=a-b+c=2012\Rightarrow f\left(-1\right)=a-b=2\)

\(\Rightarrow a+b=1;a-b=2\Rightarrow2a=3\Leftrightarrow a=\dfrac{3}{2};b=\dfrac{3}{2}-2=-\dfrac{1}{2}\)

Vậy \(f\left(-2\right)=4a-2b+c=\dfrac{4.3}{2}-2\left(-\dfrac{1}{2}\right)+2010=6+1+2010=2017\)

23 tháng 5 2021

Xét đa thức \(F\left(x\right)=ax^2+bx+c\)

\(F\left(0\right)=c=2016\)

\(F\left(1\right)=a+b+c=2017\Rightarrow a+b=1\)  (1)

\(F\left(-1\right)=a-b+c=2018\Rightarrow a-b=2\)  (2)

Từ (1), (2)

\(\Rightarrow\hept{\begin{cases}a+b-a+b=-1\\a+b+a-b=3\end{cases}}\Rightarrow\hept{\begin{cases}2b=-1\\2a=3\end{cases}}\Rightarrow\hept{\begin{cases}b=-0,5\\a=1,5\end{cases}}\)

\(\Rightarrow F\left(2\right)=1,5.2^2-0,5.2+2016=2021\)

Vậy \(F\left(2\right)=2021\).

21 tháng 4 2019

f(0) = a.02 + b. 0 + c = 2016

<=> c =2016

f (1) = a.12 + b.1 + c =2017

<=> a + b =1        (1)

f ( -1 ) = a (-1)2 + b . (-1) +c =2018

<=> a -b =2           (2)

Từ (1),(2) <=> a = 1,5 ; b = -0,5

=> F(x) = 1,5x2  -0,5 x + 2016

F (2) = 1,5 . 22 -0,5 .2 +2016 

         = 6 -1 +2016 =2021

21 tháng 4 2019

Ta có: 

\(F\left(0\right)=a.0^2+b.0+c=2016\)

\(\Rightarrow c=2016\)

\(F\left(1\right)=a.1^2+b.1+c=2017\)

\(\Rightarrow a+b=1\)

\(F\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c=2018\)

\(\Rightarrow a-b=2\)

Vì a + b =1 và a - b = 2 nên \(\Rightarrow a=\frac{3}{2};b=\frac{-1}{2}\)

Vậy \(F\left(2\right)=\frac{3}{2}.2^2-\left(\frac{-1}{2}\right).2+2016=2023\)

23 tháng 2 2021

oho☢☢☠☠

23 tháng 2 2021

f(x) chia hết cho 3 với mọi x

=> f(0) chia hết cho 3 => C chia hết cho 3

f(1) ; f(-1) chia hết cho 3

=> f(1) = A+B +C chia hết cho 3 và f(-1) = A - B + C chia hết cho 3

=> f(1) + f(-1) chia hết cho 3 và f(1) - f(-1) chia hết cho 3

f(1) + f(-1) chia hết cho 3 => 2A + 2C chia hết cho 3 => A + C chia hết cho 3 mà C chia hết cho 3 => A chia hết cho 3

f(1) - f(-1) chia hết cho 3 => 2B chia hết cho 3 => B chia hết cho 3

 Vậy....................... 

f(1)=a+b+c

g(1)=(2021-2022+2)^2021*(2022-2021-2)^2022=1

=>tổng các hệ số của g(x) là 1

Sai đề không bạn???

             

Theo đề bài f(0)= 2017 => c= 2017

         f(1)= 2018 => a + b + c = 2018 => a + b = 1 (1)

         f(-1)= 2019 => a - b + c= 2019 => a - b= 2  (2)

Cộng theo vế của (1) và (2), ta được

2a = 3  => a = 3/2

=>b=  -1/2

Vậy a=3/2, b=-1/2, c= 2017. Khi đó f(2)= 6 - 2 + 2017= 2021

Vậy f(2)= 2021

NV
31 tháng 8 2021

\(f\left(0\right)=2010\Rightarrow a.0^2+b.0+c=2010\Rightarrow c=2010\)

\(f\left(1\right)=2011\Rightarrow a.1^2+b.1+c=2011\Rightarrow a+b+c=2011\)

\(\Rightarrow a+b+2010=2011\Rightarrow a+b=1\) (1)

\(f\left(-1\right)=2012\Rightarrow a.\left(-1\right)^2+b.\left(-1\right)+c=2012\)

\(\Rightarrow a-b+c=2012\Rightarrow a-b+2010=2012\)

\(\Rightarrow a-b=2\Rightarrow a=b+2\)

Thế vào (1) \(\Rightarrow b+2+b=1\Rightarrow2b=-1\Rightarrow b=-\dfrac{1}{2}\)

\(\Rightarrow a=b+2=-\dfrac{1}{2}+2=\dfrac{3}{2}\)

\(\Rightarrow f\left(x\right)=\dfrac{3}{2}x^2-\dfrac{1}{2}x+2010\)

\(\Rightarrow f\left(-2\right)=\dfrac{3}{2}.\left(-2\right)^2-\dfrac{1}{2}.\left(-2\right)+2010=2017\)