Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d3//d2 \(\Rightarrow a=-1\)
d3 cắt d1 tại điểm có hoành độ bằng 1
\(\Rightarrow a+b=2\)
Ta có hệ
\(\left\{{}\begin{matrix}a=-1\\a+b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-1\\b=3\end{matrix}\right.\)
a: Để (d1)//(d2) thì m+2=3m-2
\(\Leftrightarrow-2m=-4\)
hay m=2
a, Phương trình hoành độ giao điểm là \(\dfrac{3}{2}x=3x-3\Leftrightarrow\dfrac{3}{2}x=3\Leftrightarrow x=2\Leftrightarrow y=3\Leftrightarrow A\left(2;3\right)\)
Vậy \(A\left(2;3\right)\) là giao điểm của 2 đt
b, Gọi \(\left(d_3\right):y=ax+b\left(a\ne0\right)\) là đt cần tìm
\(\left(d_3\right)//\left(d_1\right)\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{3}{2}\\b\ne0\end{matrix}\right.\)
PT giao của d3 với Ox tại hoành độ -6 là \(-6a+b=0\Leftrightarrow b=6\cdot\dfrac{3}{2}=9\)
Vậy \(\left(d_3\right):y=\dfrac{3}{2}x+9\)