Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAIE và ΔCIB có
IA=IC
\(\widehat{AIE}=\widehat{CIB}\)
IE=IB
Do đó: ΔAIE=ΔCIB
b: Xét tứ giác ABCE có
I là trung điểm của AC
Ilà trung điểm của BE
Do đó: ABCE là hình bình hành
Suy ra: AB//CE
c: Xét ΔABC và ΔFCB có
AB=FC
BC chung
AC=FB
Do đó:ΔABC=ΔFCB
mik ko bít vẽ hk nha :(
a) xét tam giác AIB và tam giác CIE có:
AI = IC ( BI là đường trung tuyến)
IB = IE ( gt )
góc AIB = góc CIE ( 2 góc đối đỉnh )
=> tam giác AIB = tam giác CIE ( c.g.c)
b) vì tam giác AIB = tam giác CIE ( cm ý a )
=> góc ECI = IAB = 90'
=> EC vuông góc với AC mà AC vuông góc với AB
=> AB // CE ( đpcm )
c) vì BC > AB ( trong tam giác vuông, cạnh huyền > cạnh g vuông ) mà AB = CE ( tam giác AIB = tam giác CIE )
=> BC > CE ( đpcm)
Bạn tự kẻ hình nhé :v
a) Xét ΔAIB và ΔCIE có :
AI = CI ( gt)
Góc AIB = Góc CIE (2 góc đối đỉnh)
IB = IE (gt)
⇒ ΔAIB = ΔCIE (c.g.c)
b) ⇒ ΔAIB = ΔCIE (c.g.c)
⇒ Góc IBA = Góc IEC (2 góc tương ứng)
Mà 2 góc này lại so le trong với nhau suy ra AB // CE
c) Vì trong tam giác vuông cạnh huyền lớn nhất suy ra trong tam giác vuông ABC canh BC lớn nhất suy ra BC > AB
Mà AB = CE
⇒ BC > CE
Xét tam giác IAE và ICB có:
IA = IC (gt)
Góc BIC = góc EIA (vì 2 góc đối đỉnh)
IB = IC (gt)
Suy ra: tam giác IAE = tam giác ICB (c.g.c)
Suy ra góc AEI = góc IBC (2 góc tương ứng)
mà 2 góc nằm ở vị trí so le trong
nên AE//BC
c,
a: Xét ΔMAB và ΔMEC có
MA=ME
\(\widehat{AMB}=\widehat{EMC}\)(hai góc đối đỉnh)
MB=MC
Do đó: ΔMAB=ΔMEC
b: Ta có: ΔMAB=ΔMEC
=>AB=EC
Ta có: ΔMAB=ΔMEC
=>\(\widehat{MAB}=\widehat{MEC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//CE
c: Xét ΔMAC và ΔMEB có
MA=ME
\(\widehat{AMC}=\widehat{EMB}\)(hai góc đối đỉnh)
MC=MB
Do đó: ΔMAC=ΔMEB
=>\(\widehat{MAC}=\widehat{MEB}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AC//BE
d: Xét ΔIAM và ΔKEM có
IA=KE
\(\widehat{IAM}=\widehat{KEM}\)
AM=EM
Do đó: ΔIAM=ΔKEM
=>\(\widehat{IMA}=\widehat{KME}\)
mà \(\widehat{IMA}+\widehat{IME}=180^0\)(hai góc kề bù)
nên \(\widehat{KME}+\widehat{IME}=180^0\)
=>I,M,K thẳng hàng
a) Xét Δ AIB và Δ CID:
+ IB = ID (gt).
+ IA = IC (I là trung điểm của AC).
+ ^AIB = ^CID (2 góc đối đỉnh).
=> Δ AIB = Δ CID (c - g - c).
b) Xét tứ giác ABCD có:
+ I là trung điểm của AC (gt).
+ I là trung điểm của BC (IB = ID).
=> Tứ giác ABCD là hình bình hành (dhnb).
=> AD = BC và AD // BC (Tính chất hình bình hành).
c) Xét tứ giác KABC có:
+ E là trung điểm của AB (gt).
+ E là trung điểm của KC (EC = EK).
=> Tứ giác KABC là hình bình hành (dhnb).
=> KA // BC (Tính chất hình bình hành).
Mà AD // BC (cmt).
=> 3 điểm D, A, K thẳng hàng (đpcm).
b) ΔACE cân
Trả lời:
Xét ΔACH và ΔECH có :
AH = HE (gt)
AHCˆ=EHCˆ(=90o)
HC: chung
=> ΔACH=ΔECH (cạnh huyền-cạnh góc vuông)
=> CA= CE (2 cạnh tương ứng)
Xét ΔCAE có :
AC = CE (cmt)
=> ΔCAE cân tại C
~Học tốt!~
Bài 1( Hình mik đăng lên trước nha, mới lại phần bn nối điểm K với B, điểm F với D hộ mik nhé)
a) Xét tam giác EFA và tam giác CAB, có:
AE = AC ( giả thiết)
AF = AB (giả thiết)
Góc EAF = góc BAC (2 góc đối đỉnh)
=> ΔEAF = ΔCAB (c.g.c)
b) Vì ΔEFA = ΔCAB (Theo a)
=> Góc ABC = Góc EFA (cặp góc tương ứng)
=> EF = BC (cặp cạnh tương ứng) (1)
Mà EK = KF = 1/2 EF (2)
BD = DC = 1/2 BC (3)
Từ (1), (2) và (3)
=> KF = BD
Xét ΔKFB và ΔFBD, có
Cạnh BF chung
KF = BD (chứng minh trên)
Góc EFB = Góc ABC (chứng minh trên)
=> ΔKFB =ΔDBF (c.g.c)
=> KB = FD (cặp cạnh tương ứng)