K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2021

\(\tan a=\dfrac{1}{\cot a}=\dfrac{15}{8}=\dfrac{\sin a}{\cos a}\\ \Rightarrow\sin a=\dfrac{15}{8}\cos a\\ \sin^2a+\cos^2a=1\\ \Rightarrow\dfrac{225}{64}\cos^2a+\cos^2a=1\\ \Rightarrow\dfrac{289}{64}\cos^2a=1\Rightarrow\cos^2a=\dfrac{64}{289}\\ \Rightarrow\cos a=\dfrac{8}{17}\Rightarrow\sin a=\dfrac{15}{17}\)

NV
26 tháng 7 2021

Lớp 9 nên coi như các góc này đều nhọn

a.

\(cosa=\sqrt{1-sin^2a}=\dfrac{15}{17}\)

\(tana=\dfrac{sina}{cosa}=\dfrac{8}{15}\)

\(cota=\dfrac{1}{tana}=\dfrac{15}{8}\)

b.

\(1+cot^2a=\dfrac{1}{sin^2a}\Rightarrow sina=\dfrac{1}{\sqrt{1+cot^2a}}=\dfrac{4}{5}\)

\(cosa=\sqrt{1-sin^2a}=\dfrac{3}{5}\)

\(tana=\dfrac{1}{cota}=\dfrac{4}{3}\)

a) \(\cos=\sqrt{1-\sin^2}=\sqrt{1-\dfrac{64}{289}}=\dfrac{15}{17}\)

\(\tan=\dfrac{\sin}{\cos}=\dfrac{8}{17}:\dfrac{15}{17}=\dfrac{8}{15}\)

\(\cot=\dfrac{\cos}{\sin}=\dfrac{15}{17}:\dfrac{8}{17}=\dfrac{15}{8}\)

a: sin a=2/3

=>cos^2a=1-(2/3)^2=5/9

=>\(cosa=\dfrac{\sqrt{5}}{3}\)

\(tana=\dfrac{2}{3}:\dfrac{\sqrt{5}}{3}=\dfrac{2}{\sqrt{5}}\)

\(cota=1:\dfrac{2}{\sqrt{5}}=\dfrac{\sqrt{5}}{2}\)

b: cos a=1/5

=>sin^2a=1-(1/5)^2=24/25

=>\(sina=\dfrac{2\sqrt{6}}{5}\)

\(tana=\dfrac{2\sqrt{6}}{5}:\dfrac{1}{5}=2\sqrt{6}\)

\(cota=\dfrac{1}{2\sqrt{6}}=\dfrac{\sqrt{6}}{12}\)

c: cot a=1/tana=1/2

\(1+tan^2a=\dfrac{1}{cos^2a}\)

=>1/cos^2a=1+4=5

=>cos^2a=1/5

=>cosa=1/căn 5

\(sina=\sqrt{1-cos^2a}=\dfrac{2}{\sqrt{5}}\)

a) cos = 15/7

tan = 8/15

cot = 15/8

b) cos = 4/5

tan = 3/5

cot = 4/5

1: 

a: sin a=căn 3/2

\(cosa=\sqrt{1-sin^2a}=\sqrt{1-\dfrac{3}{4}}=\sqrt{\dfrac{1}{4}}=\dfrac{1}{2}\)

\(tana=\dfrac{\sqrt{3}}{2}:\dfrac{1}{2}=\sqrt{3}\)

cot a=1/tan a=1/căn 3

b: \(tana=2\)

=>cot a=1/tan a=1/2

\(1+tan^2a=\dfrac{1}{cos^2a}\)

=>\(\dfrac{1}{cos^2a}=5\)

=>cos^2a=1/5

=>cosa=1/căn 5

\(sina=\sqrt{1-cos^2a}=\sqrt{\dfrac{4}{5}}=\dfrac{2}{\sqrt{5}}\)

c: \(cosa=\sqrt{1-\left(\dfrac{5}{13}\right)^2}=\dfrac{12}{13}\)

tan a=5/13:12/13=5/12

cot a=1:5/12=12/5

6 tháng 7 2018

bài này không có giới hạn góc sao tìm được bạn .

AH
Akai Haruma
Giáo viên
23 tháng 7 2021

Lời giải:

Xét tam giác vuông $ABC$ vuông tại $A$ có $\widehat{B}=a$

$\cot a=\frac{BA}{AC}=\frac{8}{15}\Rightarrow AB=\frac{8}{15}AC$

Áp dụng định lý Pitago:

$BC=\sqrt{AB^2+AC^2}=\sqrt{(\frac{8}{15}AC)^2+AC^2}=\frac{17}{15}AC$

Do đó:

$\sin a=\frac{AC}{BC}=\frac{AC}{\frac{17}{15}AC}=\frac{15}{17}$

$\cos a=\frac{AB}{BC}=\frac{\frac{8}{15}AC}{\frac{17}{15}AC}=\frac{8}{17}$

$\tan a=\frac{AC}{AB}=\frac{1}{\cot a}=\frac{15}{8}$

11 tháng 9 2017

tính góc a

11 tháng 9 2017

bài toán này chẳng có căn cứ gì.

có mỗi thế thì làm sao mà làm được!

ít ra bạn phải cho hai góc đó có phụ nhau hay không.

hay là tam giác đó có vuông hay không chứ!

 .....chắc bạn nhầm đề rồi.....