Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\tan a=\dfrac{1}{\cot a}=\dfrac{15}{8}=\dfrac{\sin a}{\cos a}\\ \Rightarrow\sin a=\dfrac{15}{8}\cos a\\ \sin^2a+\cos^2a=1\\ \Rightarrow\dfrac{225}{64}\cos^2a+\cos^2a=1\\ \Rightarrow\dfrac{289}{64}\cos^2a=1\Rightarrow\cos^2a=\dfrac{64}{289}\\ \Rightarrow\cos a=\dfrac{8}{17}\Rightarrow\sin a=\dfrac{15}{17}\)
a) cos = 15/7
tan = 8/15
cot = 15/8
b) cos = 4/5
tan = 3/5
cot = 4/5
a: sin a=2/3
=>cos^2a=1-(2/3)^2=5/9
=>\(cosa=\dfrac{\sqrt{5}}{3}\)
\(tana=\dfrac{2}{3}:\dfrac{\sqrt{5}}{3}=\dfrac{2}{\sqrt{5}}\)
\(cota=1:\dfrac{2}{\sqrt{5}}=\dfrac{\sqrt{5}}{2}\)
b: cos a=1/5
=>sin^2a=1-(1/5)^2=24/25
=>\(sina=\dfrac{2\sqrt{6}}{5}\)
\(tana=\dfrac{2\sqrt{6}}{5}:\dfrac{1}{5}=2\sqrt{6}\)
\(cota=\dfrac{1}{2\sqrt{6}}=\dfrac{\sqrt{6}}{12}\)
c: cot a=1/tana=1/2
\(1+tan^2a=\dfrac{1}{cos^2a}\)
=>1/cos^2a=1+4=5
=>cos^2a=1/5
=>cosa=1/căn 5
\(sina=\sqrt{1-cos^2a}=\dfrac{2}{\sqrt{5}}\)
Lớp 9 nên coi như các góc này đều nhọn
a.
\(cosa=\sqrt{1-sin^2a}=\dfrac{15}{17}\)
\(tana=\dfrac{sina}{cosa}=\dfrac{8}{15}\)
\(cota=\dfrac{1}{tana}=\dfrac{15}{8}\)
b.
\(1+cot^2a=\dfrac{1}{sin^2a}\Rightarrow sina=\dfrac{1}{\sqrt{1+cot^2a}}=\dfrac{4}{5}\)
\(cosa=\sqrt{1-sin^2a}=\dfrac{3}{5}\)
\(tana=\dfrac{1}{cota}=\dfrac{4}{3}\)
a) \(\cos=\sqrt{1-\sin^2}=\sqrt{1-\dfrac{64}{289}}=\dfrac{15}{17}\)
\(\tan=\dfrac{\sin}{\cos}=\dfrac{8}{17}:\dfrac{15}{17}=\dfrac{8}{15}\)
\(\cot=\dfrac{\cos}{\sin}=\dfrac{15}{17}:\dfrac{8}{17}=\dfrac{15}{8}\)
1:
a: sin a=căn 3/2
\(cosa=\sqrt{1-sin^2a}=\sqrt{1-\dfrac{3}{4}}=\sqrt{\dfrac{1}{4}}=\dfrac{1}{2}\)
\(tana=\dfrac{\sqrt{3}}{2}:\dfrac{1}{2}=\sqrt{3}\)
cot a=1/tan a=1/căn 3
b: \(tana=2\)
=>cot a=1/tan a=1/2
\(1+tan^2a=\dfrac{1}{cos^2a}\)
=>\(\dfrac{1}{cos^2a}=5\)
=>cos^2a=1/5
=>cosa=1/căn 5
\(sina=\sqrt{1-cos^2a}=\sqrt{\dfrac{4}{5}}=\dfrac{2}{\sqrt{5}}\)
c: \(cosa=\sqrt{1-\left(\dfrac{5}{13}\right)^2}=\dfrac{12}{13}\)
tan a=5/13:12/13=5/12
cot a=1:5/12=12/5
b,ta có :\(\frac{sin^2a-cos^2a\left(1-cos^2a\right)}{cos^2a-sin^2a\left(1-sin^2a\right)}=\frac{sin^4a}{cos^4a}\)
=>\(\frac{sin^2a-sin^2a.cos^2a}{cos^2a-sin^2a.cos^2a}=\frac{sin^4a}{cos^4a}\)
=>\(\frac{sin^2a\left(1-cos^2a\right)}{cos^2a\left(1-sin^2a\right)}=\frac{sin^4a}{cos^4a}\)
=>\(\frac{sin^4a}{cos^4a}=\frac{sin^4a}{cos^4a}\)luon dung => dpcm
Lời giải:
Xét tam giác vuông $ABC$ vuông tại $A$ có $\widehat{B}=a$
$\cot a=\frac{BA}{AC}=\frac{8}{15}\Rightarrow AB=\frac{8}{15}AC$
Áp dụng định lý Pitago:
$BC=\sqrt{AB^2+AC^2}=\sqrt{(\frac{8}{15}AC)^2+AC^2}=\frac{17}{15}AC$
Do đó:
$\sin a=\frac{AC}{BC}=\frac{AC}{\frac{17}{15}AC}=\frac{15}{17}$
$\cos a=\frac{AB}{BC}=\frac{\frac{8}{15}AC}{\frac{17}{15}AC}=\frac{8}{17}$
$\tan a=\frac{AC}{AB}=\frac{1}{\cot a}=\frac{15}{8}$