Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x^4}{y+3z}+\frac{y+3z}{16}+\frac{1}{4}+\frac{1}{4}\ge4\sqrt[4]{\frac{x^4}{y+3z}.\frac{y+3z}{16}.\frac{1}{4}.\frac{1}{4}}=x\)
\(\Rightarrow\frac{x^4}{y+3z}\ge x-\frac{y+3z}{16}-\frac{1}{2}\)
Tương tự cho 2 BĐT còn lại :
\(\frac{y^4}{z+3x}\ge y-\frac{z+3x}{16}-\frac{1}{2};\frac{z^4}{z+3y}\ge z-\frac{x+3y}{16}-\frac{1}{2}\)
Công theo vế 3 BĐT trên ta được :
\(VT\ge\frac{3}{4}\left(x+y+z\right)-\frac{3}{2}\ge\frac{3}{4}.3-\frac{3}{2}=\frac{3}{4}\)
Đẳng thức xảy ra khi \(x=y=z=1\)
Chúc bạn học tốt !!!
Cách 2:
\(VT\ge\frac{\left(x^2+y^2+z^2\right)^2}{4\left(x+y+z\right)}\ge\frac{\frac{\left(x^2+y^2+z^2\right)\left(x+y+z\right)^2}{3}}{4\left(x+y+z\right)}\ge\frac{\left(xy+yz+zx\right)\left(x+y+z\right)}{12}\)
\(\ge\frac{\left(xy+yz+zx\right)\sqrt{3\left(xy+yz+zx\right)}}{12}\ge\frac{3}{4}\)
Đẳng thức xảy ra khi \(x=y=z=1\)
Áp dụng bđt phụ \(\sqrt{ \left(a+b\right)\left(c+d\right)}\ge\sqrt{ac}+\sqrt{bd}\)có
\(VT=\frac{x}{x+\sqrt{\left(x+y\right)\left(z+x\right)}}+\frac{y}{y+\sqrt{\left(y+x\right)\left(z+y\right)}}+\frac{z}{z+\sqrt{\left(z+x\right)\left(y+z\right)}}\)
\(\le\frac{x}{x+\sqrt{xz}+\sqrt{xy}}+\frac{y}{y+\sqrt{yz}+\sqrt{yx}}+\frac{z}{z+\sqrt{zx}+\sqrt{zy}}\)
\(=\frac{x}{\sqrt{x}\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)}+\frac{y}{\sqrt{y}\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)}+\frac{z}{\sqrt{z}\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)}\)
\(=\frac{\sqrt{x}+\sqrt{y}+\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\)
với \(x+y+z=3\Rightarrow3x=x\left(x+y+z\right)=x^2+xy+xz\Rightarrow3x+yz=\left(x+y\right)\left(x+z\right)\)
tương tự mấy cái kia nhé
Áp dụng bđt bu nhi a ta có \(\left(x+y\right)\left(x+z\right)\ge\left(\sqrt{xz}+\sqrt{xy}\right)^2\Rightarrow\sqrt{\left(x+y\right)\left(x+z\right)}\ge\sqrt{xz}+\sqrt{xy}\)
=> \(x+\sqrt{3x+yz}\ge x+\sqrt{xy}+\sqrt{xz}=\sqrt{x}\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\)
=> \(\frac{x}{x+\sqrt{3x+yz}}\le\frac{x}{\sqrt{x}\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)}=\frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)
tương tự mấy cái kia rồi cộng vào ta có
\(A\le\frac{\sqrt{x}+\sqrt{y}+\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\) (ĐPCM)
\(5\le xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}\)\(\Leftrightarrow\)\(x+y+z\ge\sqrt{15}\)
\(\frac{x^2}{\sqrt{8x^2+3y^2+14xy}}=\frac{x^2}{\sqrt{8x^2+2xy+3y^2+12xy}}\ge\frac{x^2}{\sqrt{9x^2+12xy+4y^2}}=\frac{x^2}{3x+2y}\)
\(A\ge sigma\frac{x^2}{3x+2y}\ge\frac{\left(x+y+z\right)^2}{5\left(x+y+z\right)}=\frac{x+y+z}{5}\ge\sqrt{\frac{3}{5}}\)
Dấu "=" xảy ra khi \(x=y=z=\sqrt{\frac{5}{3}}\)
Đề bài thiếu điều kiện rồi :")))
thêm điều kiện đi rồi giải cho
Áp dụng B.C.S ta có:
\(\frac{x}{x+\sqrt{3x+yz}}=\frac{x}{x+\sqrt{\left(x+y\right)\left(x+z\right)}}\)
\(\le\frac{x}{x+\sqrt{xy}+\sqrt{xz}}=\frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)
Tương tự cộng lại ta có dpcm.
Dấu = khi x=y=z=1
Ta có \(\sqrt{3x+yz}=\sqrt{x\left(x+y+z\right)+yz}=\sqrt{\left(x+z\right)\left(x+y\right)}\ge\sqrt{xy}+\sqrt{xz}\)(BĐT buniacoxki)
=>\(VT\le\frac{x}{x+\sqrt{xz}+\sqrt{xy}}+\frac{y}{y+\sqrt{yx}+\sqrt{yz}}+\frac{z}{z+\sqrt{zx}+\sqrt{yz}}\)
=> \(VT\le\frac{\sqrt[]{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}+\frac{\sqrt{y}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}+\frac{\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\)(ĐPCM)
Dấu bằng xảy ra khi a=b=c=1
(*) Xét BĐT \(\sqrt{\left(a+b\right)\left(c+d\right)}\ge\sqrt{ac}+\sqrt{bd}\) với a ; b; c ;d > 0
BĐT <=> \(\left(a+b\right)\left(c+d\right)\ge ac+bd+2\sqrt{abcd}\)
<=> \(ad-2\sqrt{abcd}+bc\ge0\Leftrightarrow\left(\sqrt{ad}-\sqrt{bc}\right)^2\ge0\)
Dễ thấy BĐT cuối luôn đúng
Dấu '' = '' của BĐT xảy ra khi ad = bc <=> \(\frac{a}{c}=\frac{b}{d}\)
(*) ÁP dụng BĐT ta có
\(\sqrt{3x+yz}=\sqrt{\left(x+y+z\right)x+yz}=\sqrt{\left(x+z\right)\left(y+x\right)}\ge\sqrt{xy}+\sqrt{xz}\)
=> \(\frac{x}{x+\sqrt{3x+yz}}\le\frac{x}{x+\sqrt{xy}+\sqrt{xz}}=\frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)
Dấu '' = '' của BĐT xảy ra khi x/y = z/x
(*) CMTT với hai cái còn lại
Cộng Ba vế BĐT ta đc ĐPCM
Dấu '' = '' của BĐT xảy ra khi x = y = z = 1
Áp dụng bất đẳng thức Cauchy-Schwarz, ta được:
\(\left(9x^3+3y^2+z\right)\left(\frac{1}{9x}+\frac{1}{3}+z\right)\ge\left(x+y+z\right)^2\)
\(\Rightarrow\frac{x}{9x^3+3y^2+z}\le\frac{x\left(\frac{1}{9x}+\frac{1}{3}+z\right)}{\left(x+y+z\right)^2}=\frac{\frac{1}{9}+\frac{x}{3}+zx}{\left(x+y+z\right)^2}\)(1)
Hoàn toàn tương tự, ta có: \(\frac{y}{9y^3+3z^2+x}\le\frac{\frac{1}{9}+\frac{y}{3}+xy}{\left(x+y+z\right)^2}\)(2); \(\frac{z}{9z^3+3x^2+y}\le\frac{\frac{1}{9}+\frac{z}{3}+yz}{\left(x+y+z\right)^2}\)(3)
Cộng theo vế của 3 bất đẳng thức (1), (2), (3), ta được:
\(\frac{x}{9x^3+3y^2+z}+\frac{y}{9y^3+3z^2+x}+\frac{z}{9z^3+3x^2+y}\)\(\le\frac{\frac{1}{9}.3+\frac{x+y+z}{3}+xy+yz+zx}{\left(x+y+z\right)^2}\)
\(\le\frac{\frac{1}{9}.3+\frac{x+y+z}{3}+\frac{\left(x+y+z\right)^2}{3}}{\left(x+y+z\right)^2}=1\)(*)
Mặt khác, có: \(2017\left(xy+yz+zx\right)\le2017.\frac{\left(x+y+z\right)^2}{3}=\frac{2017}{3}\)(**)
Từ (*) và (**) suy ra \(A=\frac{x}{9x^3+3y^2+z}+\frac{y}{9y^3+3z^2+x}+\frac{z}{9z^3+3x^2+y}+2017\left(xy+yz+zx\right)\)
\(\le1+\frac{2017}{3}=\frac{2020}{3}\)
Đẳng thức xảy ra khi \(x=y=z=\frac{1}{3}\)
Áp dụng BĐT AM-GM ta có:
\(\frac{x^4}{y+3z}+\frac{y+3z}{16}+\frac{1}{4}+\frac{1}{4}\ge4\sqrt[4]{\frac{x^4}{y+3z}\cdot\frac{y+3z}{16}\cdot\frac{1}{4}\cdot\frac{1}{4}}=x\)
\(\Rightarrow\frac{x^4}{y+3z}\ge x-\frac{y+3z}{16}-\frac{1}{2}\).Tương tự ta có:
\(\frac{y^4}{z+3x}\ge y-\frac{z+3x}{16}-\frac{1}{2};\frac{z^4}{x+3y}\ge z-\frac{x+3y}{16}-\frac{1}{2}\)
Cộng theo vế ta có:
\(P\ge\frac{3}{4}\left(x+y+z\right)-\frac{3}{2}\ge\frac{3}{4}\cdot3-\frac{3}{2}=\frac{3}{4}\)
Dấu "=" khi x=y=z=1
xin cho mình hỏi sao x+y+z lại\(\ge\)xy+yz+zx vậy