\(xy+yz+xz\ge3\)

CMR : 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2019

\(\frac{x^4}{y+3z}+\frac{y+3z}{16}+\frac{1}{4}+\frac{1}{4}\ge4\sqrt[4]{\frac{x^4}{y+3z}.\frac{y+3z}{16}.\frac{1}{4}.\frac{1}{4}}=x\)

\(\Rightarrow\frac{x^4}{y+3z}\ge x-\frac{y+3z}{16}-\frac{1}{2}\)

Tương tự cho 2 BĐT còn lại : 

\(\frac{y^4}{z+3x}\ge y-\frac{z+3x}{16}-\frac{1}{2};\frac{z^4}{z+3y}\ge z-\frac{x+3y}{16}-\frac{1}{2}\)

Công theo vế 3 BĐT trên ta được :

\(VT\ge\frac{3}{4}\left(x+y+z\right)-\frac{3}{2}\ge\frac{3}{4}.3-\frac{3}{2}=\frac{3}{4}\)

Đẳng thức xảy ra khi \(x=y=z=1\)

Chúc bạn học tốt !!!

29 tháng 12 2019

Cách 2:

\(VT\ge\frac{\left(x^2+y^2+z^2\right)^2}{4\left(x+y+z\right)}\ge\frac{\frac{\left(x^2+y^2+z^2\right)\left(x+y+z\right)^2}{3}}{4\left(x+y+z\right)}\ge\frac{\left(xy+yz+zx\right)\left(x+y+z\right)}{12}\)

\(\ge\frac{\left(xy+yz+zx\right)\sqrt{3\left(xy+yz+zx\right)}}{12}\ge\frac{3}{4}\)

Đẳng thức xảy ra khi \(x=y=z=1\)

28 tháng 11 2016

Áp dụng BĐT AM-GM ta có:

\(\frac{x^4}{y+3z}+\frac{y+3z}{16}+\frac{1}{4}+\frac{1}{4}\ge4\sqrt[4]{\frac{x^4}{y+3z}\cdot\frac{y+3z}{16}\cdot\frac{1}{4}\cdot\frac{1}{4}}=x\)

\(\Rightarrow\frac{x^4}{y+3z}\ge x-\frac{y+3z}{16}-\frac{1}{2}\).Tương tự ta có:

\(\frac{y^4}{z+3x}\ge y-\frac{z+3x}{16}-\frac{1}{2};\frac{z^4}{x+3y}\ge z-\frac{x+3y}{16}-\frac{1}{2}\)

Cộng theo vế ta có:

\(P\ge\frac{3}{4}\left(x+y+z\right)-\frac{3}{2}\ge\frac{3}{4}\cdot3-\frac{3}{2}=\frac{3}{4}\)

Dấu "=" khi x=y=z=1

28 tháng 11 2016

xin cho mình hỏi sao x+y+z lại\(\ge\)xy+yz+zx vậy

21 tháng 9 2018

\(3=x^2+y^2+z^2\ge3\sqrt[3]{x^2y^2z^2}\)

\(\Rightarrow xyz\le1\)

\(\sqrt[3]{x^2}+\sqrt[3]{y^2}+\sqrt[3]{z^2}\le\frac{x^2+1+1}{3}+\frac{y^2+1+1}{3}+\frac{z^2+1+1}{3}=3\)

Ta co:

\(A=\frac{x}{\sqrt[3]{yz}}+\frac{y}{\sqrt[3]{xz}}+\frac{z}{\sqrt[3]{xy}}=\frac{x\sqrt[3]{x}}{\sqrt[3]{xyz}}+\frac{y\sqrt[3]{y}}{\sqrt[3]{xyz}}+\frac{z\sqrt[3]{z}}{\sqrt[3]{xyz}}\)

\(\ge x\sqrt[3]{x}+y\sqrt[3]{y}+z\sqrt[3]{z}\)

\(\Rightarrow3A\ge3\left(x\sqrt[3]{x}+y\sqrt[3]{y}+z\sqrt[3]{z}\right)\ge\left(x\sqrt[3]{x}+y\sqrt[3]{y}+z\sqrt[3]{z}\right)\left(\sqrt[3]{x^2}+\sqrt[3]{y^2}+\sqrt[3]{z^2}\right)\)

\(\ge\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)

\(\Rightarrow A\ge xy+yz+zx\)

25 tháng 5 2020

Áp dụng BĐT Cauchy - Schwarz, ta có: \(3\left(x^2+y^2+z^2\right)=\left(1^2+1^2+1^2\right)\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)

\(\Rightarrow x+y+z\le\sqrt{3\left(x^2+y^2+z^2\right)}=3=x^2+y^2+z^2\)(Do \(x^2+y^2+z^2=3\))

Ta có: \(\frac{x}{\sqrt[3]{yz}}+\frac{y}{\sqrt[3]{zx}}+\frac{z}{\sqrt[3]{xy}}=\frac{x}{\sqrt[3]{yz.1}}+\frac{y}{\sqrt[3]{zx.1}}+\frac{z}{\sqrt[3]{xy.1}}\)

\(\ge\frac{x}{\frac{y+z+1}{3}}+\frac{y}{\frac{z+x+1}{3}}+\frac{z}{\frac{x+y+1}{3}}\)\(=\frac{3x}{y+z+1}+\frac{3y}{z+x+1}+\frac{3z}{x+y+1}\)

\(=\frac{3x^2}{xy+zx+x}+\frac{3y^2}{yz+xy+y}+\frac{3z^2}{zx+yz+z}\)\(\ge\frac{3\left(x+y+z\right)^2}{2\left(xy+yz+zx\right)+\left(x+y+z\right)}\)(Theo BĐT Cauchy - Schwarz dạng Engle)

\(\ge\frac{3\left(x+y+z\right)^2}{2\left(xy+yz+zx\right)+x^2+y^2+z^2}=\frac{3\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=3=x^2+y^2+z^2\)

\(\ge xy+yz+zx\)

Đẳng thức xảy ra khi x = y = z = 1

5 tháng 2 2020

Áp dụng BĐT Cô-si dạng Engel,ta có :

\(\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{xz}}+\frac{z^2}{z+\sqrt{xy}}\ge\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{xz}}\)

Mà \(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\le x+y+z\)

\(\Rightarrow\)\(\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{xz}}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\ge\frac{3}{2}\)

Dấu "=" xảy ra khi x = y = z = \(\frac{3}{2}\)

5 tháng 2 2020

nhầm sửa x = y = z = 1 nha

29 tháng 7 2019

Ta có \(\sqrt{3x+yz}=\sqrt{x\left(x+y+z\right)+yz}=\sqrt{\left(x+z\right)\left(x+y\right)}\ge\sqrt{xy}+\sqrt{xz}\)(BĐT buniacoxki)

=>\(VT\le\frac{x}{x+\sqrt{xz}+\sqrt{xy}}+\frac{y}{y+\sqrt{yx}+\sqrt{yz}}+\frac{z}{z+\sqrt{zx}+\sqrt{yz}}\)

=> \(VT\le\frac{\sqrt[]{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}+\frac{\sqrt{y}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}+\frac{\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\)(ĐPCM)

Dấu bằng xảy ra khi a=b=c=1

26 tháng 4 2021

Áp dụng bđt phụ \(\sqrt{ \left(a+b\right)\left(c+d\right)}\ge\sqrt{ac}+\sqrt{bd}\)có 

\(VT=\frac{x}{x+\sqrt{\left(x+y\right)\left(z+x\right)}}+\frac{y}{y+\sqrt{\left(y+x\right)\left(z+y\right)}}+\frac{z}{z+\sqrt{\left(z+x\right)\left(y+z\right)}}\)

\(\le\frac{x}{x+\sqrt{xz}+\sqrt{xy}}+\frac{y}{y+\sqrt{yz}+\sqrt{yx}}+\frac{z}{z+\sqrt{zx}+\sqrt{zy}}\)

\(=\frac{x}{\sqrt{x}\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)}+\frac{y}{\sqrt{y}\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)}+\frac{z}{\sqrt{z}\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)}\)

\(=\frac{\sqrt{x}+\sqrt{y}+\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\)

26 tháng 4 2021

bạn sửa lại đề đi ạ

29 tháng 1 2021

Ta có: \(\frac{x^2}{x^4+yz}\le\frac{x^2}{2\sqrt{x^4.yz}}=\frac{x^2}{2x^2\sqrt{yz}}=\frac{1}{2\sqrt{yz}}\)(BĐt cosi) (1)

CMTT: \(\frac{y^2}{y^4+xz}\le\frac{1}{2\sqrt{xz}}\) (2)

\(\frac{z^2}{z^4+xy}\le\frac{1}{2\sqrt{xy}}\)(3)

Từ (1); (2) và (3) =>A =  \(\frac{x^2}{x^4+yz}+\frac{y^2}{y^4+xz}+\frac{z^2}{z^4+xy}\le\frac{1}{2}\left(\frac{1}{\sqrt{xz}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xy}}\right)\)

      Áp dụng bđt \(ab+bc+ac\le a^2+b^2+c^2\)

cmt đúng: <=> \(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\)(luôn đúng)

Khi đó: A \(\le\frac{1}{2}\cdot\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{2}\cdot\frac{xy+yz+xz}{xyz}\le\frac{1}{2}\cdot\frac{x^2+y^2+z^2}{xyz}=\frac{3xyz}{2xyz}=\frac{3}{2}\)

16 tháng 9 2017

với \(x+y+z=3\Rightarrow3x=x\left(x+y+z\right)=x^2+xy+xz\Rightarrow3x+yz=\left(x+y\right)\left(x+z\right)\)

tương tự mấy cái kia nhé

Áp dụng bđt bu nhi a ta có \(\left(x+y\right)\left(x+z\right)\ge\left(\sqrt{xz}+\sqrt{xy}\right)^2\Rightarrow\sqrt{\left(x+y\right)\left(x+z\right)}\ge\sqrt{xz}+\sqrt{xy}\)

=> \(x+\sqrt{3x+yz}\ge x+\sqrt{xy}+\sqrt{xz}=\sqrt{x}\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\)

=> \(\frac{x}{x+\sqrt{3x+yz}}\le\frac{x}{\sqrt{x}\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)}=\frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\) 

tương tự mấy cái kia rồi cộng vào ta có 

\(A\le\frac{\sqrt{x}+\sqrt{y}+\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\) (ĐPCM)

17 tháng 9 2017

bằng 1

28 tháng 5 2017

ta có 3x + yz = x2 + xy + yz + zx = (x+y)(x+z)

do đó:

\(\frac{x}{x+\sqrt{3x+yz}}=\frac{x\left(\sqrt{x^2+xy+yz+zx}-x\right)}{\left(\sqrt{x^2+xy+yz+zx}+x\right)\left(\sqrt{x^2+xy+yz+zx}-x\right)}\)

\(\frac{x\left(\sqrt{\left(x+y\right)\left(x+z\right)}-x\right)}{xy+yz+zx}\le\frac{x\left(\frac{x+y+x+z}{2}-x\right)}{xy+yz+zx}\)\(\le\frac{x\left(y+z\right)}{2\left(xy+yz+zx\right)}\)

tương tự với 2 số hạng còn lại nên ta được: P\(\le\)1. đpcm

15 tháng 5 2020

hi minh ket ban nhe

AH
Akai Haruma
Giáo viên
16 tháng 3 2018

Lời giải:

Phải thêm điều kiện \(x,y,z>0\) nữa em nhé. Nếu không bài toán sai ngay với \(x=y=z=-1\)

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\text{VT}=\frac{x^4}{y+3z}+\frac{y^4}{z+3x}+\frac{z^4}{x+3y}=\frac{(x^2)^2}{y+3z}+\frac{(y^2)^2}{z+3x}+\frac{(z^2)^2}{x+3y}\)

\(\geq \frac{(x^2+y^2+z^2)^2}{y+3z+z+3x+x+3y}=\frac{(x^2+y^2+z^2)^2}{4(x+y+z)}(1)\)

Áp dụng BĐT Bunhiacopxky: \((x^2+y^2+z^2)(1+1+1)\geq (x+y+z)^2\)

\(\Rightarrow \sqrt{3(x^2+y^2+z^2)}\geq x+y+z(2)\)

Từ \((1); (2)\Rightarrow \text{VT}\geq \frac{(x^2+y^2+z^2)^2}{4\sqrt{3(x^2+y^2+z^2)}}=\frac{\sqrt{(x^2+y^2+z^2)^3}}{4\sqrt{3}}\)

Theo hệ quả của BĐT AM-GM \(x^2+y^2+z^2\geq xy+yz+xz\geq 3\)

Suy ra \(\text{VT}\geq \frac{\sqrt{3^3}}{4\sqrt{3}}=\frac{3}{4}\) (đpcm)

Dấu bằng xảy ra khi \(x=y=z=1\)