Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Link : https://123doc.org/document/3369350-ung-dung-cua-dinh-ly-viet.htm
Trang 2 nhé :33
Nhìn nó tưởng khủng hóa ra đơn giản lắm :D
Sẵn mẫu = 2 ở Vế trái, ta cộng luôn các Tử: Các hạng tử x1; x2; ...; xn xuất hiện 2 lần nên tổng VT = x1 + x2 + ... + xn
Sẵn mẫu = 3 ở Vế ơhair, ta cộng luôn các Tử: Các hạng tử x1; x2; ...; xn xuất hiện 3 lần nên tổng VP = x1 + x2 + ... + xn
=> VT = VP. đpcm
Lão Linh mới xét đến điều kiện dấu "=" xảy ra
Thế còn điều kiện "<" vứt đâu?
Câu hỏi của Nguyễn Thiều Công Thành - Toán lớp 9 - Học toán với OnlineMath
Phát biểu bất đẳng thức Cosy hay bất đẳng thức AM-GM:
Với n số không âm a_i với i=1,2,...,n ta có bất đẳng thức :
a_1 + a_2 + ... + a_3 >= n.(căn bậc n của (a_1.a_2....a_n))
Trường hợp n =1 hiển nhiên đúng.
Trường hợp n=2 ta có
a_1+a_2>= 2.(căn hai của (a_1.a_2))
<=>(căn bậc hai của(a_1) - căn bậc hai của (a_2))>= 0 (đúng)
Không mất tính tổng quát giả sử bđt đúng với n = k. Ta sẽ chứng mình bđt đúng với n=2k. Thật vậy
Ta có
[ a_1 + a_2 + ... + a_(k -1) + a_k ]+[a_(k+1) + ... + a_(2k-1) + a_2k]
>= k.(căn bậc k của (a_1.a_2....a_k)) + k.(căn bậc k của (a_(k+1).a_(k+2)....a_2k))
>= 2k căn bậc 2k của (a_1.a_2...a_2k).
Bây giờ ta sẽ chứng minh đúng khi n=k-1
Ta có
a_1+a_2+...+a_(k-1) + căn bậc (k-1) của (a_1.a_2....a(k-1))
>= k . (căn bậc k của (a_1.a_2...a_(k-1).(căn bậc (k-1)của(a_1.a_2...a(k-1))) = k.(căn bậc (k-1) của (a_1.a_2...a_(k-1)). đpcm
Như vậy ta đã chứng minh bđt đúng khi n=2k và n=k-1. Đây là kiểu cm quy nạp lùi.
Hiển nhiên quá nhỉ
\(x_1;x_2\)là hai nghiệm của phương trình suy ra \(\hept{\begin{cases}x_1^2-3x_1+1=0\\x_2^2-3x_2+1=0\end{cases}\Rightarrow}\hept{\begin{cases}x_1^2=3x_1-1\\x_2^2=3x_2-1\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x_1^{n+2}=3x_1^{n+1}-x_1^n\\x_2^{n+2}=3x_2^{n+1}-x_2^n\end{cases}}\)
Cộng theo từng vế của hai phương trình trên ta được: \(A_{n+2}=3A_{n+1}-A_n\)(Đpcm)
k mk mk kích lại cho
bn bt lm k vậy