Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3/ \(x^5+y^5\ge x^4y+xy^4\)
\(\Leftrightarrow x^4\left(x-y\right)-y^4\left(x-y\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)\left(x^4-y^4\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\left(x^2+y^2\right)\ge0\) (đúng)
bài 1
theo bài ra ta có
a + b + c = 0 => c = -[a+b] [ 1 ]
Thay (1) vao a^3+b^3+c^3 ta có:
a^3+b^3+[-(a+b)]^3=3ab[-(a+b)]
<=>a^3+b^3-(a+b)=-3ab(a+b)
<=> a3+ b3- a3 -3a2b- 3ab2- b3= -3a2b- 3ab2
<=> 0= 0
vậy ta có đpcm.
Ta có: \(a+b+c=0\Leftrightarrow\left\{{}\begin{matrix}a+b=-c\\b+c=-a\end{matrix}\right.\)
Lại có: \(a^3+a^2c-abc+b^2c+b^3\)
\(=a^2\left(a+c\right)+b^2\left(c+b\right)-abc\)
\(=a^2\left(-b\right)+b^2\left(-a\right)-abc\)
\(=-ab\left(a+b+c\right)=\left(-ab\right).0=0\) (đpcm)
Câu hỏi của trần thị bảo trân - Toán lớp 8 - Học toán với OnlineMath
Câu hỏi trên là c/m \(a^3+b^3+c^3=3abc\)
Vậy thì suy ra được \(a^3+b^3+c^3⋮3abc\)
Mấy câu còn lại tương tự
a) \(a,b>0\Rightarrow a^3-b^3< a^3+b^3\)
Mà \(a^3+b^3=a-b\)
\(\Rightarrow a^3-b^3< a-b\)
\(\Rightarrow\frac{a^3-b^3}{a-b}< 1\)
\(\Leftrightarrow\frac{\left(a-b\right)\left(a^2+ab+b^2\right)}{a-b}< 1\)
\(\Leftrightarrow a^2+ab+b^2< 1\)
\(\Rightarrow a^2+b^2< 0\)(Vì a,b > 0)
b) Câu hỏi của ta là ai - Toán lớp 7 - Học toán với OnlineMath