Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng t/c dtsbn:
\(\dfrac{a+b-c}{c}=\dfrac{a+c-b}{b}=\dfrac{b+c-a}{a}=\dfrac{a+b+c}{a+b+c}=1\\ \Rightarrow\left\{{}\begin{matrix}a+b-c=c\\a+c-b=b\\b+c-a=a\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a+b=2c\\a+c=2b\\b+c=2a\end{matrix}\right.\Rightarrow a=b=c\)
\(\Rightarrow P=\dfrac{\left(a+a\right)\left(a+a\right)\left(a+a\right)}{a\cdot a\cdot a}=\dfrac{8a^3}{a^3}=8\)
\(\dfrac{a+b-c}{c}=\dfrac{a+c-b}{b}=\dfrac{b+c-a}{a}=\dfrac{a+b-c+a+c-b+b+c-a}{a+b+c}=\dfrac{a+b+c}{a+b+c}=1\)
\(\Rightarrow\left\{{}\begin{matrix}a+b-c=c\\a+c-b=b\\b+c-a=a\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=2c\\a+c=2b\\b+c=2a\end{matrix}\right.\)
\(P=\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\dfrac{2a.2b.2c}{abc}=8\)
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b+c}=\dfrac{b}{a+c}=\dfrac{c}{a+b}=\dfrac{a+b+c}{b+c+a+c+a+b}=\dfrac{a+b+c}{2\left(a+b+c\right)}=\dfrac{1}{2}\)
Do \(\dfrac{a}{b+c}=\dfrac{1}{2}\Rightarrow b+c=2a\) (1)
\(\dfrac{b}{a+c}=\dfrac{1}{2}\Rightarrow a+c=2b\) (2)
\(\dfrac{c}{a+b}=\dfrac{1}{2}\Rightarrow a+b=2c\) (3)
Thay (1); (2) và (3) vào \(P\) ta có:
\(P=\dfrac{2a}{a}+\dfrac{2b}{b}+\dfrac{2c}{c}\)
\(\Rightarrow P=2+2+2=6\)
Vậy \(P=6.\)
b)\(\dfrac{a+b}{c}=\dfrac{b+c}{a}=\dfrac{c+a}{b}\)
Ta có:
\(\dfrac{a+b}{c}=\dfrac{b+c}{a}\) và \(\dfrac{b+c}{a}=\dfrac{c+a}{b}\)
\(\Rightarrow1+\dfrac{a+b}{c}=1+\dfrac{b+c}{a}\)và \(1+\dfrac{b+c}{a}=1 +\dfrac{c+a}{b}\)
\(\Rightarrow\dfrac{c}{c}+\dfrac{a+b}{c}=\dfrac{a}{a}+\dfrac{b+c}{a}\)và \(\dfrac{a}{a}+\dfrac{b+c}{a}=\dfrac{b}{b}+\dfrac{c+a}{b}\)
\(\Rightarrow\dfrac{a+b+c}{c}=\dfrac{a+b+c}{a}\)và \(\dfrac{a+b+c}{a}=\dfrac{a+b+c}{b}\)
\(\Rightarrow\dfrac{a+b+c}{c}-\dfrac{a+b+c}{a}=0\) \(\Rightarrow\left(a+b+c\right)\cdot\left(\dfrac{1}{c}-\dfrac{1}{a}\right)=0\)
và \(\dfrac{a+b+c}{a}-\dfrac{a+b+c}{b}=0\)
\(\Rightarrow\left(a+b+c\right)\cdot\left(\dfrac{1}{a}-\dfrac{1}{b}\right)=0\)
+) Vì a,b,c đôi một khác 0
\(\Rightarrow a+b+c=0\)
\(\rightarrow a+b=\left(-c\right)\)
\(\rightarrow a+c=\left(-b\right)\)
\(\rightarrow b+c=\left(-a\right)\)
+) Ta có:
\(M=\left(1+\dfrac{a}{b}\right)\cdot\left(1+\dfrac{b}{c}\right)\cdot\left(1+\dfrac{c}{a}\right)\)
\(=\left(\dfrac{a+b}{b}\right)\cdot\left(\dfrac{b+c}{a}\right)\cdot\left(\dfrac{c+a}{c}\right)\)
\(=\dfrac{-c}{b}\cdot\dfrac{-a}{c}\cdot\dfrac{-b}{a}\)
\(=\left(-1\right)\)
Theo T/C dãy tỉ số bằng nhau
\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b+b+c+c+a}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
\(\frac{a+b}{c}=2\Rightarrow a+b=2c\)
Tương tự ta có
\(b+c=2a\)
\(c+a=2b\)
Xét \(P=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\left(\frac{a+b}{b}\right)\left(\frac{b+c}{c}\right)\left(\frac{c+a}{a}\right)\)
\(P=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{2a\cdot2b\cdot2c}{abc}=8\)
Lời giải:
$\frac{2022a+b+c}{a}=\frac{a+2022b+c}{b}=\frac{a+b+2022c}{c}$
$=2021+\frac{a+b+c}{a}=2021+\frac{a+b+c}{b}=2021+\frac{a+b+c}{c}$
$\Rightarrow \frac{a+b+c}{a}=\frac{a+b+c}{b}=\frac{a+b+c}{c}$
$\Rightarrow a+b+c=0$ hoặc $\frac{1}{a}=\frac{1}{b}=\frac{1}{c}$
$\Rightarrow a+b+c=0$ hoặc $a=b=c$
Nếu $a+b+c=0$ thì:
$P=\frac{a+b}{c}+\frac{b+c}{a}+\frac{a+c}{b}=\frac{(-c)}{c}+\frac{(-b)}{b}+\frac{(-a)}{a}=-1+(-1)+(-1)=-3$
Nếu $a=b=c$ thì:
$P=\frac{c+c}{c}+\frac{a+a}{a}+\frac{b+b}{b}=2+2+2=6$
Áp dụng t/c dãy tỉ số bằng nhau :
\(\dfrac{a+b}{c}=\dfrac{b+c}{a}=\dfrac{c+a}{b}=\dfrac{a+b+b+c+c+a}{c+a+b}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\)(a,b,c # 0 nên a + b + c # 0 )
Từ \(\dfrac{a+b}{c}=\dfrac{b+c}{a}=\dfrac{c+a}{b}\)
=> \(\dfrac{c}{a+b}=\dfrac{a}{b+c}=\dfrac{b}{c+a}\)
Áp dụng ....
\(\dfrac{c}{a+b}=\dfrac{a}{b+c}=\dfrac{b}{c+a}=\dfrac{c+a+b}{a+b+b+c+c+a}=\dfrac{a+b+c}{2\left(a+b+c\right)}=\dfrac{1}{2}\)(a + b + c # 0 )
Ta có : \(A=\dfrac{a}{b+c}+\dfrac{a+b}{c}\)
\(A=\dfrac{1}{2}+2\)
\(A=\dfrac{5}{2}\)
Vậy \(A=\dfrac{5}{2}\)