K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
20 tháng 6 2023

Lời giải:

$\frac{2022a+b+c}{a}=\frac{a+2022b+c}{b}=\frac{a+b+2022c}{c}$

$=2021+\frac{a+b+c}{a}=2021+\frac{a+b+c}{b}=2021+\frac{a+b+c}{c}$

$\Rightarrow \frac{a+b+c}{a}=\frac{a+b+c}{b}=\frac{a+b+c}{c}$

$\Rightarrow a+b+c=0$ hoặc $\frac{1}{a}=\frac{1}{b}=\frac{1}{c}$

$\Rightarrow a+b+c=0$ hoặc $a=b=c$

Nếu $a+b+c=0$ thì:

$P=\frac{a+b}{c}+\frac{b+c}{a}+\frac{a+c}{b}=\frac{(-c)}{c}+\frac{(-b)}{b}+\frac{(-a)}{a}=-1+(-1)+(-1)=-3$
Nếu $a=b=c$ thì:

$P=\frac{c+c}{c}+\frac{a+a}{a}+\frac{b+b}{b}=2+2+2=6$

5 tháng 11 2018

Theo T/C dãy tỉ số bằng nhau 

\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b+b+c+c+a}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

\(\frac{a+b}{c}=2\Rightarrow a+b=2c\)

Tương tự ta có 

\(b+c=2a\)

\(c+a=2b\)

Xét \(P=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\left(\frac{a+b}{b}\right)\left(\frac{b+c}{c}\right)\left(\frac{c+a}{a}\right)\)

\(P=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{2a\cdot2b\cdot2c}{abc}=8\)

1 tháng 1 2018

Tên của mày là Tôm

1 tháng 1 2018

bài này cũng khó đấy!

3 tháng 12 2017

\(P=\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{a}{c}\right)\left(1+\dfrac{c}{b}\right)=\dfrac{\left(a+b\right)\left(a+c\right)\left(b+c\right)}{abc}\)

\(\circledast\) Với \(a+b+c=0\Leftrightarrow\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\a+c=-b\end{matrix}\right.\)

Khi đó \(P=\dfrac{-abc}{abc}=-1\)

\(\circledast\)Với \(a+b+c\ne0\),áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}=\dfrac{a+b-c+b+c-a+c+a-b}{c+a+b}=\dfrac{a+b+c}{a+b+c}=1\)Khi đó: \(\left\{{}\begin{matrix}a+b=2c\\b+c=2a\\c+a=2b\end{matrix}\right.\Leftrightarrow P=\dfrac{8abc}{abc}=8\)

19 tháng 2 2017

bạn ơi , \(\frac{a+b-c}{c}=\frac{b+c-a}{a}\)

hay \(\frac{1+b-c}{c}-\frac{b+c-a}{a}\) vậy bn??//

Câu 2 :
\(x-y=7\)
\(\Rightarrow x=7+y\)
*)
\(B=\dfrac{3\left(7+y\right)-7}{2\left(7+y\right)+y}-\dfrac{3y+7}{2y+7+y}\)
\(=\dfrac{21+3y-7}{14+3y}-\dfrac{3y+7}{3y+7}\)
\(=\dfrac{14y+3y}{14y+3y}-1\)
\(=1-1\)
\(=0\)
Vậy B = 0

2 tháng 2 2018

2/ Ta có :

\(B=\dfrac{3x-7}{2x+y}-\dfrac{3y+7}{2y+x}\)

\(=\dfrac{3x-\left(x-y\right)}{2x+y}-\dfrac{3y+\left(x-y\right)}{2y+x}\)

\(=\dfrac{3x-x+y}{2y+x}-\dfrac{3y+x-y}{2y+x}\)

\(=\dfrac{2x+y}{2x+y}-\dfrac{2y+x}{2y+x}\)

\(=1-1=0\)

26 tháng 10 2017

\(\dfrac{3}{a+b}=\dfrac{2}{b+c}=\dfrac{1}{c+a}\Leftrightarrow\dfrac{1}{\dfrac{3}{a+b}}=\dfrac{1}{\dfrac{2}{b+c}}=\dfrac{1}{\dfrac{1}{c+a}}\Leftrightarrow\dfrac{a+b}{3}=\dfrac{b+c}{2}=\dfrac{c+a}{1}\)Đặt:

\(\dfrac{a+b}{3}=\dfrac{b+c}{2}=\dfrac{a+c}{1}=t\)\(\Leftrightarrow\left\{{}\begin{matrix}a+b=3t\\b+c=2t\\a+c=t\end{matrix}\right.\)

Ta có:\(a+b+b+c+c+a=3t+2t+t\Leftrightarrow2\left(a+b+c\right)=6t\Leftrightarrow a+b+c=3t\)

Nên:\(c=a+b+c-a-b=3t-3b=0\)

Thay vào \(A\) ta có:

\(A=\dfrac{a+b+3c}{a+b-2c}=\dfrac{a+b+0}{a+b-0}=\dfrac{a+b}{a+b}=1\)

NV
9 tháng 12 2018

Do \(a,b,c\ne0\)

\(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}=\dfrac{ac}{a+c}\Rightarrow\dfrac{a+b}{ab}=\dfrac{b+c}{bc}=\dfrac{a+c}{ac}\)

\(\Rightarrow\dfrac{a}{ab}+\dfrac{b}{ab}=\dfrac{b}{bc}+\dfrac{c}{bc}=\dfrac{a}{ac}+\dfrac{c}{ac}\)

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a}+\dfrac{1}{c}\) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{b}+\dfrac{1}{c}\\\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a}+\dfrac{1}{c}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{a}=\dfrac{1}{c}\\\dfrac{1}{b}=\dfrac{1}{a}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=c\\b=a\end{matrix}\right.\) \(\Rightarrow a=b=c\)

\(\Rightarrow M=\dfrac{a.a+a.a+a.a}{a^2+a^2+a^2}=\dfrac{3a^2}{3a^2}=1\)