Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bổ sung đề:\(a,b,c\inℕ^∗\)
Ta có:\(a^{102}+b^{102}=\left(a^{101}+b^{101}\right)\left(a+b\right)-ab\left(a^{100}+b^{100}\right)\left(1\right)\)với \(\forall a,b\)
Mà \(a^{100}+b^{100}=a^{101}+b^{101}=a^{102}+b^{102}\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\)suy ra:\(a+b-ab=1\)
\(\Leftrightarrow\left(a-1\right)\left(b-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=1\Rightarrow1+b^{100}=1+b^{101}=1+b^{102}\Rightarrow b^{100}=b^{101}=b^{102}\Rightarrow b=1\\b=1\Rightarrow a=1\end{cases}}\)
\(\Rightarrow a=1;b=1\)
\(\Rightarrow P=1^{2010}+1^{2010}=2\)
Vậy \(=2\)
B=(10101+1):(10102+1)<(10101+1+9):(10102 +1+9)=(10101+10):(10102+10)=[10.(10100+1]:[10.(10101+)]
=(10100+1):(10101+1)=A
=>A>B
A = 3+32+33+.....+3100
3A = 32+33+34+....+3101
2A = 3A - A = 3101-3 < 3101
=> A = \(\frac{3^{101}-3}{2}<3^{101}\)
=> A < B
A = 3 + 32 + 33 + 34 +.............3100
3A =32 + 33 + 34 +.............3101
3A - A = (3 + 32 + 33 + 34 +.............3100) - (32 + 33 + 34 +.............3101)
2A = 3101 - 3
\(A=\frac{3^{101}-3}{2}\)
B = 3101
Ta có A < B
GIÚP MÌNH VỚIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
Ta có : a102 + b102 = (a101 + b101)(a + b) - ab(a100 + b100)
Mà a100 + b100 = a101 + b101 = a102 + b102.
Do đó : a + b - ab = 1
=> a + b - ab - 1 = 0
<=> (a - ab) + (b - 1) = 0
<=> a(1 - b) - (1 - b) = 0
=> (a - 1)(1 - b) = 0
\(\Leftrightarrow\orbr{\begin{cases}a-1=0\\1-b=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}a=1\\b=1\end{cases}}\)
Nên a = 1 thì b = 1
Vậy P = a2004 + b2004 = 12004 + 12004 = 1 + 1 = 2
I have a crazy idea tham khảo nhé:
Vì: a100 + b100; a101 + b101; a102 + b102 đều = nhau nên a chỉ = 1 => a2004 + b2004 = 12004 + 12004 = 1 + 1 = 2
Vậy: