Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(101A=\frac{101\left(101^{102}+1\right)}{101^{103}+1}=\frac{101^{103}+101}{101^{103}+1}=\frac{101^{103}+1+100}{101^{103}+1}=\frac{101^{103}+1}{101^{103}+1}+\frac{100}{101^{103}+1}=1+\frac{100}{100^{103}+1}\)
\(101B=\frac{101\left(101^{103}+1\right)}{101^{104}+1}=\frac{101^{104}+101}{101^{104}+1}=\frac{101^{104}+1+100}{101^{104}+1}=\frac{101^{104}+1}{101^{104}+1}+\frac{100}{101^{104}+1}=1+\frac{100}{101^{104}+1}\)
vì 100103+1<100104+1
=>\(\frac{100}{100^{103}+1}>\frac{100}{100^{104}+1}\)
=>\(1+\frac{100}{100^{103}+1}>1+\frac{100}{100^{104}+1}\)
=>A>B
\(A=3^2-3^5+3^8-3^{11}+...-3^{101}\)
\(\Rightarrow3A=3^5-3^8+3^{11}-3^{14}+...-3^{104}\)
\(\Rightarrow3A+A=\left(3^5-3^8+3^{11}-3^{14}+...-3^{104}\right)+\left(3^2-3^5+3^8-3^{11}+...-3^{101}\right)\)
\(\Rightarrow4A=-3^{104}+3^2\)
\(\Rightarrow28A=7\left(3^2-3^{104}\right)\)
\(\Rightarrow B+28A=3^{104}+7\left(3^2-3^{104}\right)\)
\(\Rightarrow B+28A=7.3^2-6.3^{104}=3^2\left(7-2.3^{103}\right)\)
Ta có: A = 5 + 52 + 53 +....+ 5100
⇒�=(5+52)+(53+54)+...+(599+5100)⇒A=(5+52)+(53+54)+...+(599+5100)
⇒�=5(1+5)+53.(1+5)+...+599.(1+5)⇒A=5(1+5)+53.(1+5)+...+599.(1+5)
⇒�=5.6+53.6+...+599.6⇒A=5.6+53.6+...+599.6
�=6.(5+53+...+599)A=6.(5+53+...+599) chia hết cho 6.
Vì A chia hết cho 6 nên A là hợp số.
A =5 + 52 + 53 + ... + 5100
A ⋮ 1; 5 ; A (A > 5)
Vậy A là hợp số
b; A = 5 + 52 + 53 + ... + 5100
A = 5 + 52(1 + 5 + 52 + ... + 598)
⇒ A \(⋮\) 5; A không chia hết cho 52. Vậy A không phải là số chính phương vì số chính phương chia hết cho một số nguyên tố thì phải chia hết cho bình phương số nguyên tố đó.
a, trong dãy này có các thừa số có tận cùng là 5 mà 5 nhân với 1 số chẵn sẽ có tận cùng là 0. các số khác nhân với số có tận cùng là 0 thì cũng sẽ có tận cùng là 0.suy ra dãy này có tận cùng là 0. Số có tận cùng là 0 chia hết cho 2 và 5.
suy ra đây là hợp số
b) ta có ...7^4k(k thuộc N*) luôn có chữ số tận cùng là 1 mà ...1 lũy thừa bao nhiêu thì vẫn có chữ số tận cùng là 1.
mà 2017^2017=2017^(2017/4)=2017^4^504.2017=....1^504.2017=...1.2017=...7
ta có ...3^4k(k thuộc N*) luôn có chữ số tận cùng là 1 mà ...1 lũy thừa bao nhiêu thì vẫn có chữ số tận cùng là 1.
mà 3^2017=3^(2017/4)=3^4^504.3=....1^504.3=...1.3=....3
ta có: ....7+...3=.....0
Số có tận cùng là 0 chia hết cho 2 và 5.
suy ra đây là hợp số.
c)ta có ...2^4k(k thuộc N*) luôn có chữ số tận cùng là 6 mà ...6 lũy thừa bao nhiêu thì vẫn có chữ số tận cùng là 6.
số có chữ số tận cùng là 6 thì lũy thừa bao nhiêu thì vẫn có chữ số tận cùng là 6.
suy ra 46^102=...6
52^102=52^(102/4)=52^4^25.52^2=....6^25. ..4=...6. ....4=...4
mà ....6+....4=....0
Số có tận cùng là 0 chia hết cho 2 và 5.
suy ra đây là hợp số.
A = (3101 - 1) : 2
B = sai đề
C = sai đề
D = (3151 - 3100) : 2
mk xin làm câu b nhé mà A = chứ ko phải A : đâu nhé bạn.(^:mủ)
ta có: A = 5+5^2+5^3+...+5^100
vì 5 chia hết cho 5
5^2 chia hết cho 5
5^3 chia hết cho 5
.......
5^100 chia hết cho 5
nên A = 5+5^2+5^3+...+5^100 cũng chia hết cho 5(vì các số hạng tronh tổng chia hết cho 5)
a, gọi UCLN(2n+1,3n+1) là d
Ta có 2n+1 chia hết cho d=> 6n+3 chia hết cho d
3n+1 chia hết cho d=> 6n+2 chia hết cho d
=> (6n+3)-(6n+2)=1 chia hết cho d
=> d là ước của 1
Vậy 2n+1 và 3n+1 là 2 số nt cùng nhau