Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: a2 + b2 = (a + b)2 - 2ab = 62 - 2.4 = 28
a4 + b4 = (a2 + b2)2 - 2a2b2 = 282 - 2.42 = 752
Nhóm vào , ta có :
\(\left(a+1\right)^3+\left(b+1\right)^3+a+b+1+1=0\)
Đến đây áp dụng HĐT là ra
1/ \(a+b+c=11\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=121\)
\(\Leftrightarrow ab+bc+ca=\frac{121-\left(a^2+b^2+c^2\right)}{2}=\frac{121-87}{2}=17\)
2/ \(a^3+b^3+a^2c+b^2c-abc\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)+c\left(a^2-ab+b^2\right)\)
\(=\left(a^2-ab+b^2\right)\left(a+b+c\right)=0\)
3/ \(x^4+3x^3y+3xy^3+y^4\)
\(=\left(\left(x+y\right)^2-2xy\right)^2-2x^2y^2+3xy\left(\left(x+y\right)^2-2xy\right)\)
\(=\left(9^2-2.4\right)^2-2.4^2+3.4.\left(9^2-2.4\right)=6173\)
bạn alibaba nguyễn có thể làm lại giúp mình được không ?
a) Ta có: \(a^2+b^2+c^2=ab+bc+ca\)
\(\Rightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)
\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)(1)
Mà \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)nên:
(1) xảy ra\(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\Leftrightarrow a=b=c\left(đpcm\right)\)
ai làm giúp em phép tính này với em làm mãi ko dc ạ
bài 5 tính nhanh
a 100 -99 +98 - 97 + 96 - 95 + ... + 4 -3 +2
b 100 -5 -5 -...-5 ( có 20 chữ số 5 )
c 99- 9 -9 - ... -9 ( có 11 chữ số 9 )
d 2011 + 2011 + 2011 + 2011 -2008 x 4
i 14968+ 9035-968-35
k 72 x 55 + 216 x 15
l 2010 x 125 + 1010 / 126 x 2010 -1010
e 1946 x 131 + 1000 / 132 x 1946 -946
g 45 x 16 -17 / 45 x 15 + 28
h 253 x 75 -161 x 37 + 253 x 25 - 161 x 63 / 100 x 47 -12 x 3,5 - 5,8 : 0,1
Ta có :
\(a^2+b^2+\left(a+b\right)^2=a^2+b^2+\left(a^2+b^2+2ab\right)\)
\(=2\left(a^2+b^2+ab\right)=2.7=14\)
\(a^4+b^4+\left(a+b\right)^4=a^4+b^4+a^4+C_4^1a^3b+C_4^2a^2b^2+C_4^3ab^3+b^4\)
\(=2a^4+2b^4+4a^3b+6a^2b^2+4ab^3\)
\(=2\left(a^4+b^4+3a^2b^2+2ab^3+2a^3b\right)\)
\(=2\left[\left(a^2\right)^2+\left(b^2\right)^2+\left(ab\right)^2+2a^2b^2+2\left(ab\right)b^2+2\left(ab\right)a^2\right]\)
\(=2.\left(a^2+b^2+ab\right)^2=2.7^2=98\)
\(\Rightarrow M=\frac{a^2+b^2+\left(a+b\right)^2}{a^4+b^4+\left(a+b\right)^4}=\frac{14}{98}=\frac{1}{7}\)
Vậy ...