Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(f\left(x\right)=-\left(x-1\right)^2\)
\(f\left(-\dfrac{1}{3}\right)=-\left(-\dfrac{1}{3}-1\right)^2=-\dfrac{16}{9}\)
\(g\left(-\dfrac{1}{2}\right)=\dfrac{1}{4}-\dfrac{1}{2}+1=\dfrac{1}{4}-\dfrac{2}{4}+\dfrac{4}{4}=\dfrac{3}{4}\)
\(g\left(\dfrac{1}{10}\right)=\dfrac{1}{100}+\dfrac{1}{10}+1=1.01\)
b: Vì \(-\left(x-1\right)^2\le0\forall x\)
nên không có giá trị nào của x để f(x)>0
a) * f(-2)
=-2.(-2)+1
=2
* f(3)
=-2.3+1
=-5
b) hàm số y=-2x+1
với x=-1 thì y=3 không bằng 1
Vậy M(-1,1)ko thuộc đồ thị hàm số f(x)
c) ta có 1>0
=> -2x+1=1
-2x=1-1
-2x=0
x=0/(-2)
x=0
=> x=0
vậy x=0 thì f(x)>0
nhớ k giùm mình nha
a)\(F\left(-2\right)=-2.\left(-2\right)+1=5\)
\(F\left(\frac{1}{2}\right)=-2.\left(\frac{1}{2}\right)+1=0\)
\(F\left(3\right)=-2.3+1=-5\)
\(F\left(1\right)=-2.1+1=-1\)
a) Thay f(-3) vào hàm số ta có :
y=f(-3)=2.(-3)2-8=10
Thay f(0) vào hàm số ta có :
y=(f0)=2.02-8=-8
Thay f(1) vào hàm số ta có :
y=f(1)=2.12-8=-6
Thay f(2) vào hàm số ta có :
y=f(2)=2.22-8=0
b) y=f(x)=0 <=> 2x2-8=0
2x2=8
x2=8:2
x2=4
=> x=2
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
\(\hept{\begin{cases}f\left(x\right)=x+1\\g\left(x\right)=x+\sqrt{\frac{4}{25}}=x+\frac{2}{5}\end{cases}}\)
\(g\left(0\right)=\frac{2}{5}\Rightarrow f\left(x\right)=\frac{2}{5}\Rightarrow x+1=\frac{2}{5}\Rightarrow x=-\frac{3}{5}\)
Bài 1:
|\(x\)| = 1 ⇒ \(x\) \(\in\) {-\(\dfrac{1}{3}\); \(\dfrac{1}{3}\)}
A(-1) = 2(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)) + 5
A(-1) = \(\dfrac{2}{9}\) + 1 + 5
A (-1) = \(\dfrac{56}{9}\)
A(1) = 2.(\(\dfrac{1}{3}\) )2- \(\dfrac{1}{3}\).3 + 5
A(1) = \(\dfrac{2}{9}\) - 1 + 5
A(1) = \(\dfrac{38}{9}\)
|y| = 1 ⇒ y \(\in\) {-1; 1}
⇒ (\(x;y\)) = (-\(\dfrac{1}{3}\); -1); (-\(\dfrac{1}{3}\); 1); (\(\dfrac{1}{3};-1\)); (\(\dfrac{1}{3};1\))
B(-\(\dfrac{1}{3}\);-1) = 2.(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)).(-1) + (-1)2
B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) - 1 + 1
B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\)
B(-\(\dfrac{1}{3}\); 1) = 2.(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)).1 + 12
B(-\(\dfrac{1}{3};1\)) = \(\dfrac{2}{9}\) + 1 + 1
B(-\(\dfrac{1}{3}\); 1) = \(\dfrac{20}{9}\)
B(\(\dfrac{1}{3};-1\)) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).(-1) + (-1)2
B(\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) + 1 + 1
B(\(\dfrac{1}{3}\); -1) = \(\dfrac{20}{9}\)
B(\(\dfrac{1}{3}\); 1) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).1 + (1)2
B(\(\dfrac{1}{3}\); 1) = \(\dfrac{2}{9}\) - 1 + 1
B(\(\dfrac{1}{3}\);1) = \(\dfrac{2}{9}\)