K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2018

Ta có :

A(x) = 3x - 2x2 - 2 +6x2 = 4x2 + 3x - 2

B(x) = 3x2 - x - 2x3 + 4 = -2x3 + 3x2 - x + 4

C(x) = 1 + 4x3 - 2x = 4x3 - 2x + 1

⇒ A(x) + B(x) - C(x)

= (4x2 + 3x - 2) + (-2x3 + 3x2 - x + 4) - (4x3 - 2x + 1)

= 4x2 + 3x - 2 - 2x3 + 3x2 - x + 4 - 4x3 + 2x - 1

= 7x2 + 4x + 1 - 6x3 = -6x3 + 7x2 + 4x + 1

31 tháng 5 2018

f(x)=\(9-x^5-7x^4-2x^3+x^2+4x\)

g(x)=\(x^5-7x^4+4x^3-3x-9\)

f(x)+g(x)=\(9-x^5-7x^4-2x^3+x^2+4x\)+\(x^5-7x^4+4x^3-3x-9\)

=(9-9)-(\(x^5-x^5\))\(-\left(7x^4+7x^4\right)-\left(2x^3-4x^3\right)+x^2\)+(\(\)\(4x-3x\))

=\(-14x^4+2x^3+x^2+x\)

31 tháng 5 2018

a) Sắp xếp các đa thức theo lũy thừa giảm của biến :

\(f\left(x\right)=-x^5-7x^4-2x^3+x^2+4x+9\)

\(g\left(x\right)=x^5-7x^4+2x^3+2x^3-3x-9\)

b, \(h\left(x\right)=f\left(x\right)+g\left(x\right)\)

\(=\left(-x^5-7x^4-2x^3+x^2+4x+9\right)+\left(x^5-7x^4+2x^3+2x^3-3x-9\right)\)

=> h(x) = -14x4 + 2x3 + x2 +x

a,

Trước khi sắp xếp ta thu gọn các đa thức trên

P(x)=-2x\(^2\)+3x\(^4\)+x\(^3\)+x\(^2\)-\(\dfrac{1}{4}\)x

=(x\(^2\)-2x\(^2\))+3x\(^4\)+x\(^3\)-\(\dfrac{1}{4}\)

=-1x\(^2\)+3x\(^4\)+x\(^3\)-\(\dfrac{1}{4}\)x

Q(x)=3x\(^4\)+3x\(^2\)-\(\dfrac{1}{4}\)-4x\(^3\)-2x\(^2\)

=(3x\(^2\)-2x\(^2\))+3x\(^4\)-4x\(^3\)-\(\dfrac{1}{4}\)

=x\(^2\)+3x\(^4\)-4x\(^3\)-\(\dfrac{1}{4}\)

Sau khi thu gọn ta đi sắp xếp các đa thức theo lũy thừa giảm dần của biến

P(x)=3x\(^4\)+x\(^3\)-1x\(^2\)-\(\dfrac{1}{4}\)x

Q(x)=3x\(^4\)-4x\(^3\)+x\(^2\)-\(\dfrac{1}{4}\)

b,Tính

+P(x)+Q(x)=3x\(^4\)+x\(^3\)-x\(^2\)-\(\dfrac{1}{4}\)x+3x\(^4\)-4x\(^3\)+x\(^2\)-\(\dfrac{1}{4}\)

=(3x\(^4\)+3x\(^4\))+(x\(^3\)-4x\(^3\))+(x\(^2\)-x\(^2\))-\(\dfrac{1}{4}\)x-\(\dfrac{1}{4}\)

=6x\(^4\)-3x\(^3\)-\(\dfrac{1}{4}\)x-\(\dfrac{1}{4}\)

+P(x)-Q(x)=3x\(^4\)+x\(^3\)-x\(^2\)-\(\dfrac{1}{4}\)x-(3x\(^4\)-4x\(^3\)+x\(^2\)-\(\dfrac{1}{4}\))

=3x\(^4\)+x\(^3\)-x\(^2\)-\(\dfrac{1}{4}\)x-3x\(^4\)+ 4x\(^3\)-x\(^2\)+\(\dfrac{1}{4}\)

=(3x\(^4\)-3x\(^{^{ }4}\))+(x\(^3\)+4x\(^3\))-(x\(^2\)+x\(^2\))-\(\dfrac{1}{4}\)x+\(\dfrac{1}{4}\)

=5x\(^3\)-4x\(^2\)-\(\dfrac{1}{4}\)x+\(\dfrac{1}{4}\)

c,

Ta có:P(0)=3.0\(^4\)+0\(^3\)-0\(^2\)-\(\dfrac{1}{4}\).0

=3.0+0-0-0

=0(thỏa mãn)

Lại có:Q(0)=3.0\(^4\)+0\(^2\)-4.0\(^3\)-\(\dfrac{1}{4}\)

=3.0+0-4.0-\(\dfrac{1}{4}\)

=0-\(\dfrac{1}{4}\)

=-\(\dfrac{1}{4}\)(vô lí)

Vậy x=0 là nghiệm của đa thức P(x) nhưng ko phải là nghiệm của đa thức Q(x)

21 tháng 3 2021

a, Sắp xếp : \(P\left(x\right)=2x^3+5x^2-3x^4+7-4x\)

\(\Rightarrow P\left(x\right)=-3x^4+2x^3-5x^2-4x+7\)

\(Q\left(x\right)=-3+2x^4-x+x^3-5x^2\)

\(\Rightarrow Q\left(x\right)=2x^4+x^3-5x^2-x-3\)

b, Ta có :* Đặt \(V\left(x\right)=P\left(x\right)+Q\left(x\right)\) 

hay \(V\left(x\right)=2x^3+5x^2-3x^4+7-4x-3+2x^4-x+x^3-5x^2\)

\(=3x^3-x^4+4-5x\)

Vậy \(V\left(x\right)=3x^3-x^4+4-5x\)

Ta có : * Đặt \(K\left(x\right)=P\left(x\right)-Q\left(x\right)\)

hay \(2x^3+5x^2-3x^4+7-4x-\left(-3+2x^4-x+x^3-5x^2\right)\)

\(=2x^3+5x^2-3x^4+7-4x+3-2x^4+x-x^3+5x^2\)

\(=x^3+10x^2-5x^4+10-3x\)

Vậy \(K\left(x\right)=x^3+10x^2-5x^4+10-3x\)

4 tháng 4 2017

a)\(A\left(x\right)=x^4+4x^3+2x^2+x-7\)

\(B\left(x\right)=2x^4-4x^3-2x^2-5x+3\)

b) \(f\left(x\right)=A\left(x\right)+B\left(x\right)=x^4+4x^3+2x^2+x-7+2x^4-4x^3-2x^2-5x+3=3x^4-4x-4\)

\(g\left(x\right)=A\left(x\right)-B\left(x\right)=x^4+4x^3+2x^2+x-7-2x^4+4x^3+2x^2+5x-3=-x^4+8x^3+4x^2+6x-10\)c)\(g\left(0\right)=-0^4+8.0^3+4.0^2+6.0-10=-10\)

\(g\left(-2\right)=\left(-2\right)^4+8.\left(-2\right)^3+4.\left(-2\right)^2+6.\left(-2\right)-10=16-64+16-12-10=-54\)

AH
Akai Haruma
Giáo viên
24 tháng 6 2020

Lời giải:

a)

$M(x)=(x^5+5x^5)-2x^4-4x^3+3x$

$=6x^5-2x^4-4x^3+3x$

$N(x)=-6x^5+(7x^4-5x^4)+(x^3+3x^3)+4x^2-3x-1$

$=-6x^5+2x^4+4x^3+4x^2-3x-1$

b)

$M(-1)=6(-1)^5-2(-1)^4-4(-1)^3+3(-1)=-7$

$N(-2)=-6(-2)^5+2(-2)^4+4(-2)^3+4(-2)^2-3(-2)-1$

$=213$

c)

$M(x)+N(x)=(6x^5-2x^4-4x^3+3x)+(-6x^5+2x^4+4x^3+4x^2-3x-1)$

$=4x^2-1$

$M(x)-N(x)=(6x^5-2x^4-4x^3+3x)-(-6x^5+2x^4+4x^3+4x^2-3x-1)$

$=12x^5-4x^4-8x^3-4x^2+6x+1$

d)

$F(x)=M(x)+N(x)=4x^2-1=0\Leftrightarrow x^2=\frac{1}{4}$

$\Leftrightarrow x=\pm \frac{1}{2}$

Vậy $x=\pm \frac{1}{2}$ là nghiệm của $F(x)$

12 tháng 5 2019

phần a nek

sắp xếp : M(x) =-x3+1/2x2-3x+3

N(x)=1/2x3+x2-4x+6

CHÚC BẠN HỌC TỐT !!!!

21 tháng 4 2017

a) A(x)= \(-2x^4+x^2-x-7-2\)

B(x)=\(2x^4+6x^3-2x^3-x^2-8x-5\)

b) Thay số:A(x)

\(1^2-1-2-2\cdot1^4+7=3\)

B(x)

\(6\cdot2^3+2\cdot2^4-8\cdot2-5-2\cdot2^3-2^2=39\)

c)\(6x^3-2x^3-7x-12-2\)

9 tháng 3 2017

a) Sắp xếp các hạng tử của đa thức P: x4; 3x3; 3x2; x; 5

Q: x4; 2x3; x2; x; 1

b) P(x) + Q(x) = (3x2 + 5 + x4 - 3x3 - x) + (x4 + x2 - 2x3 + x + 1)

= (3x2 + x2) + (x4 + x4) - (3x3 + 2x3) + (x + x) + (5 + 1)

= 4x2 + 2x4 - 5x3 + 2x +6

9 tháng 3 2017

Câu a) P(x)=\(x^4-3x^3+3x^2-x+5\)

Q(x)=\(x^4-2x^3+x^2+x+1\)

4 tháng 4 2017

a) \(A=\)\(x^4\)\(+4x^3\)\(+2x^2\)\(+x\)\(-7\)

  \(B=\)\(2x^4\)\(-4x^3\)\(-2x^2\)\(-5x\)\(+3\)

b) f(x)= A(x)+B(x)= \(3x^4-4x\)\(-4\)

    g(x)=A(x)-B(x) =  \(-x^4+8x^3+4x^2+6x\)\(-10\)

c) g(x)= \(0^4+8.0^3+4.0^2\)\(+6.0\)\(-10\)

         = -10

   g(-2)=\(-2^4+8.-2^3+4.-2^2+6.-2\)\(-10\)

         =\(-54\)