Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) P(x) = -2x^2 + 4x^4 – 9x^3 + 3x^2 – 5x + 3
=4x^4-9x^3+x^2-5x+3
Q(x) = 5x^4 – x^3 + x^2 – 2x^3 + 3x^2 – 2 – 5x
=5x^4-3x^3+4x^2-5x-2
b)
P(x)
-bậc:4
-hệ số tự do:3
-hệ số cao nhất:4
Q(x)
-bậc :4
-hệ số tự do :-2
-hệ số cao nhất:5
a,
Trước khi sắp xếp ta thu gọn các đa thức trên
P(x)=-2x\(^2\)+3x\(^4\)+x\(^3\)+x\(^2\)-\(\dfrac{1}{4}\)x
=(x\(^2\)-2x\(^2\))+3x\(^4\)+x\(^3\)-\(\dfrac{1}{4}\)
=-1x\(^2\)+3x\(^4\)+x\(^3\)-\(\dfrac{1}{4}\)x
Q(x)=3x\(^4\)+3x\(^2\)-\(\dfrac{1}{4}\)-4x\(^3\)-2x\(^2\)
=(3x\(^2\)-2x\(^2\))+3x\(^4\)-4x\(^3\)-\(\dfrac{1}{4}\)
=x\(^2\)+3x\(^4\)-4x\(^3\)-\(\dfrac{1}{4}\)
Sau khi thu gọn ta đi sắp xếp các đa thức theo lũy thừa giảm dần của biến
P(x)=3x\(^4\)+x\(^3\)-1x\(^2\)-\(\dfrac{1}{4}\)x
Q(x)=3x\(^4\)-4x\(^3\)+x\(^2\)-\(\dfrac{1}{4}\)
b,Tính
+P(x)+Q(x)=3x\(^4\)+x\(^3\)-x\(^2\)-\(\dfrac{1}{4}\)x+3x\(^4\)-4x\(^3\)+x\(^2\)-\(\dfrac{1}{4}\)
=(3x\(^4\)+3x\(^4\))+(x\(^3\)-4x\(^3\))+(x\(^2\)-x\(^2\))-\(\dfrac{1}{4}\)x-\(\dfrac{1}{4}\)
=6x\(^4\)-3x\(^3\)-\(\dfrac{1}{4}\)x-\(\dfrac{1}{4}\)
+P(x)-Q(x)=3x\(^4\)+x\(^3\)-x\(^2\)-\(\dfrac{1}{4}\)x-(3x\(^4\)-4x\(^3\)+x\(^2\)-\(\dfrac{1}{4}\))
=3x\(^4\)+x\(^3\)-x\(^2\)-\(\dfrac{1}{4}\)x-3x\(^4\)+ 4x\(^3\)-x\(^2\)+\(\dfrac{1}{4}\)
=(3x\(^4\)-3x\(^{^{ }4}\))+(x\(^3\)+4x\(^3\))-(x\(^2\)+x\(^2\))-\(\dfrac{1}{4}\)x+\(\dfrac{1}{4}\)
=5x\(^3\)-4x\(^2\)-\(\dfrac{1}{4}\)x+\(\dfrac{1}{4}\)
c,
Ta có:P(0)=3.0\(^4\)+0\(^3\)-0\(^2\)-\(\dfrac{1}{4}\).0
=3.0+0-0-0
=0(thỏa mãn)
Lại có:Q(0)=3.0\(^4\)+0\(^2\)-4.0\(^3\)-\(\dfrac{1}{4}\)
=3.0+0-4.0-\(\dfrac{1}{4}\)
=0-\(\dfrac{1}{4}\)
=-\(\dfrac{1}{4}\)(vô lí)
Vậy x=0 là nghiệm của đa thức P(x) nhưng ko phải là nghiệm của đa thức Q(x)
Để thu gọn và sắp xếp các hạng tử của mỗi đa thức, ta cần thực hiện các bước sau:
Đối với đa thức P(x): P(x) = (4x + 1 - x^2 + 2x^3) - (x^4 + 3x - x^3 - 2x^2 - 5) = 4x + 1 - x^2 + 2x^3 - x^4 - 3x + x^3 + 2x^2 + 5 = -x^4 + 3x^3 + x^2 + x + 6
Đối với đa thức Q(x): Q(x) = 3x^4 + 2x^5 - 3x - 5x^4 - x^5 + x + 2x^5 - 1 = 2x^5 - x^5 + 3x^4 - 5x^4 + x - 3x - 1 = x^5 - 2x^4 - 2x - 1
Sau khi thu gọn và sắp xếp các hạng tử, ta có: P(x) = -x^4 + 3x^3 + x^2 + x + 6 Q(x) = x^5 - 2x^4 - 2x - 1
a: \(P\left(x\right)=\left(4x+1-x^2+2x^3\right)-\left(x^4+3x-x^3-2x^2-5\right)\)
\(=4x+1-x^2+2x^3-x^4-3x+x^3+2x^2+5\)
\(=-x^4+3x^3+x^2+x+6\)
\(Q\left(x\right)=3x^4+2x^5-3x-5x^4-x^5+x+2x^5-1\)
\(=\left(2x^5-x^5+2x^5\right)+\left(3x^4-5x^4\right)+\left(-3x+x\right)-1\)
\(=-x^5-2x^4-2x-1\)
b: Bạn ghi lại đề đi bạn
a: \(P\left(x\right)=3x^5-4x^4-2x^3+4x^2+5x+6\)
\(Q\left(x\right)=-x^5+2x^4-2x^3+3x^2-x+\dfrac{1}{4}\)
b: \(P\left(x\right)+Q\left(x\right)=2x^5-2x^4-4x^3+7x^2+4x+\dfrac{25}{4}\)
c: \(P\left(-1\right)=-3-4+2+4-5+6=0\)
Do đó: x=-1 là nghiệm của P(x)
\(Q\left(-1\right)=-\left(-1\right)+2-2\cdot\left(-1\right)+3-\left(-1\right)+\dfrac{1}{4}\)
\(=1+2+2+3+1+\dfrac{1}{4}=9.25>0\)
Do đó: x=-1 không là nghiệm của P(x)
`@` `\text {Ans}`
`\downarrow`
`a)`
`P(x) =`\(3x^2+7+2x^4-3x^2-4-5x+2x^3\)
`= (3x^2 - 3x^2) + 2x^4 + 2x^3 - 5x + (7-4)`
`= 2x^4 + 2x^3 - 5x + 3`
`Q(x) =`\(3x^3+2x^2-x^4+x+x^3+4x-2+5x^4\)
`= (5x^4 - x^4) + (3x^3 + x^3) + 2x^2 + (x + 4x)- 2`
`= 4x^4 + 4x^3 + 2x^2 + 5x - 2`
`b)`
`P(-1) = 2*(-1)^4 + 2*(-1)^3 - 5*(-1) + 3`
`= 2*1 + 2*(-1) + 5 + 3`
`= 2 - 2 + 5 + 3`
`= 8`
___
`Q(0) = 4*0^4 + 4*0^3 + 2*0^2 + 5*0 - 2`
`= 4*0 + 4*0 + 2*0 + 5*0 - 2`
`= -2`
`c)`
`G(x) = P(x) + Q(x)`
`=> G(x) = 2x^4 + 2x^3 - 5x + 3 + 4x^4 + 4x^3 + 2x^2 + 5x - 2`
`= (2x^4 + 4x^4) + (2x^3 + 4x^3) + 2x^2 + (-5x + 5x) + (3 - 2)`
`= 6x^4 + 6x^3 + 2x^2 + 1`
`d)`
`G(x) = 6x^4 + 6x^3 + 2x^2 + 1`
Vì `x^4 \ge 0 AA x`
`x^2 \ge 0 AA x`
`=> 6x^4 + 2x^2 \ge 0 AA x`
`=> 6x^4 + 6x^3 + 2x^2 + 1 \ge 0`
`=> G(x)` luôn dương `AA` `x`
a: \(P\left(x\right)=5x^5-4x^4-2x^3+4x^2+3x+6\)
Bậc là 5
\(Q\left(x\right)=-5x^5+4x^4+2x^3-4x^2+7x+\dfrac{1}{4}\)
Bậc là 5
b: H(x)=P(x)+Q(x)
\(=5x^5-4x^4-2x^3+4x^2+3x+6-5x^5+4x^4+2x^3-4x^2+7x+\dfrac{1}{4}\)
=10x+6,25
c: Để H(x)=0 thì 10x+6,25=0
hay x=-0,625