Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Ta có:
( x + 1 ) ( x + 3 ) ( x + 5 ) ( x + 7 ) + 2019
= [ ( x + 1 ) ( x + 7 ) ] . [ ( x + 3 ) ( x + 5 ) ] + 2019
= ( x2 + 8x + 7 )( x2 + 8x + 15 ) + 2019 ( 1 )
* Đặt x2 + 8x + 10 = a
thì ( 1 ) trở thành:
( a - 3 ) ( a + 5 ) + 2019
= a2 + 2a - 15 + 2019
= a ( a + 2 ) + 2004
=> Pt đã cho chia cho a = x2 + 8x + 10 dư 2004.
Vậy ..........
b)
- Vì x / (x2 - x + 1) = 1/5 => x2 - x + 1 = 5x
Ta có:
A = x2 / (x4 + x2 + 1)
A = x2 / [( x2 - x + 1 )( x2 + x + 1 )]
A = x2 / {5x . [( x2 - x + 1 ) + 2x ]}
A = x2 / [5x . ( 5x + 2x )]
A = x2 / ( 5x . 7x )
A = x2 / 35x2
A = 1/35
Vậy A = 1/35.
Ta có: \(\left(x+x^2\right)^{2+1}=0\)
\(\Leftrightarrow\left[x\left(x+1\right)\right]^3=0\)
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
a,A.B=(-2x2+3x+5)(x2-x+3)
=-2x4+3x3+5x2+2x3-3x2-5x-6x2+9x+15
=-2x4+5x3-4x2+4x+15
Trả lời :
a, A . B = ( -2x2 + 3x + 5 ) . ( x2 - x + 3 )
A . B = -2x4 + 2x3 - 6x2 + 3x3 - 3x2 + 9x + 5x2 - 5x + 15
A . B = -2x4 + 5x3 - 4x2 + 4x + 15
~ Hok tốt ~
Bài 1:
a) \(3x^2-9x=3x\left(x-3\right)\)
b) \(x^2-4x+4=\left(x-2\right)^2\)
c) \(x^2+6x+9-y^2=\left(x+3\right)^2-y^2=\left(x-y+3\right)\left(x+y+3\right)\)
Bài 2:
a) \(101^2-1=\left(101-1\right)\left(101+1\right)=102.100=10200\)
b) \(67^2+66.67+33^2=67^2+2.33.67+33^2\)
\(=\left(67+33\right)^2=100^2=10000\)
Bài 3:
\(x\left(x-3\right)+2\left(x+3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)
Vậy \(x=-2\)hoặc \(x=3\)
B1:
a) \(3x^2-9x=3x.\left(x-3\right)\)
b) \(x^2-4x+4=\left(x-2\right)^2\)
c) \(x^2+6x+9-y^2=\left(x+3\right)^2-y^2=\left(x+3+y\right).\left(x+3-y\right)\)
B2:
a) \(101^2-1=\left(101+1\right).\left(101-1\right)=102.100=10200\)
b) \(67^2+66.67+33^2=67^2+2.33.67+33^2=\left(67+33\right)^2=100^2=10000\)
B3:
\(x\left(x-3\right)+2\left(x-3\right)=0\)
\(\left(x-3\right).\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\x+2=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)
b) (1 + 2x)(1- 2x) - x(x+2)(x-2)
= (1- 4x2) - x(x2 - 4)
= 1 - 4x2- x3- 4x
= (1 - x3) + (4x - 4x2)
= (1- x) (1 + x + x2) + 4x(1 -x)
= (1-x)(1+5x + x2)
X[X - Y] + Y[X + Y]
= x2-xy+xy+y2
= x2+y2
X[X2 - Y] - X2 [X + Y] + Y[X2 - Y]
=x3-xy-x3 -x2y+ x2y-y2
= -xy-y2
~ chúc bạn học tốt ~
Vì \(\left|x\right|=2\)\(\Rightarrow\orbr{\begin{cases}x=-2\\x=2\end{cases}}\)
TH1: Nếu \(x=-2\)
\(\Rightarrow A=-2+1=-1\)
\(B=-2-1=-3\)
\(C=\left(-2\right)^2-\left(-2\right)-3=4+2-3=3\)
TH2: Nếu \(x=2\)
\(\Rightarrow A=2+1=3\)
\(B=2-1=1\)
\(C=2^2-2-3=4-2-3=-1\)
A.B.C
= ( x + 1 )( x - 1 )( x2 - x - 3 )
= ( x2 - 1 )( x2 - x - 3 )
= x4 - x3 - 3x2 - x2 + x + 3
= x4 - x3 - 4x2 + x + 3
| x | = 2 <=> x = ±2
Rồi bạn thay lần lượt vô A, B, C nhé ;-; mình đang bận không làm hết được