K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2018

x(x-y)+y(x+y)

=x^2-xy+xy+y^2

=x^2+y^2

29 tháng 8 2018

X[X - Y] + Y[X + Y]

= x2-xy+xy+y2

= x2+y2

X[X2 - Y] - X[X + Y] + Y[X2 - Y]

=x3-xy-x3 -x2y+ x2y-y2

= -xy-y2

 ~ chúc bạn học tốt ~

8 tháng 9 2018

(x-1)(x+1)(x+2)

=(x^2-1)(x+2)

=x^3+2x^2-x-2

[X-1/2] [X+1/2] [4X-1]

=\(\left(x^2-\frac{1}{4}\right)\left(4x-1\right)\)

=\(4x^3-x^2-x+\frac{1}{4}\)

1/2X2Y[2X+Y] [2X-Y]

=\(\frac{1}{2}x^2y^2\left(4x^2-y^2\right)\)

=\(2x^2y^2-\frac{1}{2}x^2y^4\)

31 tháng 7 2018

b) (1 + 2x)(1- 2x) - x(x+2)(x-2)

= (1- 4x2) - x(x2 - 4)

= 1 - 4x2- x3- 4x

= (1 - x3) + (4x - 4x2)

= (1- x) (1 + x + x2) + 4x(1 -x)

= (1-x)(1+5x + x2)

19 tháng 9 2021

e) Ta có: x4−2x3+2x−1x4−2x3+2x−1

=(x4−1)−2x(x2−1)=(x4−1)−2x(x2−1)

=(x2+1)(x−1)(x+1)−2x(x−1)(x+1)=(x2+1)(x−1)(x+1)−2x(x−1)(x+1)

=(x−1)(x+1)⋅(x2−2x+1)=(x−1)(x+1)⋅(x2−2x+1)

=(x+1)⋅(x−1)3=(x+1)⋅(x−1)3

h) Ta có: 3x2−3y2−2(x−y)23x2−3y2−2(x−y)2

=3(x2−y2)−2(x−y)2=3(x2−y2)−2(x−y)2

=3(x−y)(x+y)−2(x−y)2=3(x−y)(x+y)−2(x−y)2

=(x−y)(3x+3y−2x+2y)=(x−y)(3x+3y−2x+2y)

=(x−y)(x+5y)=(x−y)(x+5y)

19 tháng 9 2021

Bài 1:

a) x2 - y2 - 2x+2y

= (x-y)(x+y) - 2(x-y) 

= (x-y)(x+y-2) 

b) 2x + 2y - x2 - xy

= 2(x+y) - x(x +y)

= (x+y)(2-x) 

16 tháng 10 2018

Ta có:

\(x^2y^2\left(y-x\right)+y^2z^2\left(z-y\right)-z^2x^2\left(z-x\right)\)

\(=x^2y^2\left(y-x\right)+y^2z^2\left(z-x-y+x\right)-z^2x^2\left(z-x\right)\)

\(=x^2y^2\left(y-x\right)+y^2z^2\left(z-x\right)-y^2z^2\left(y-x\right)-z^2x^2\left(z-x\right)\)

\(=y^2\left(y-x\right)\left(x-z\right)\left(x+z\right)+z^2\left(z-x\right)\left(y-x\right)\left(y+x\right)\)

\(=\left(y-x\right)\left(x-z\right)\left(y^2x+y^2z-z^2y-z^2x\right)\)

\(=\left(y-x\right)\left(x-z\right)\left(y-z\right)\left(xy+yz+zx\right)\)

21 tháng 9 2020

Ta có: \(\left(x+x^2\right)^{2+1}=0\)

\(\Leftrightarrow\left[x\left(x+1\right)\right]^3=0\)

\(\Leftrightarrow x\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)