K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Rút gọn :

\(C=1+3+3^2+3^3+...+3^{10}\)

\(\Rightarrow3C=3+3^2+....+3^{11}\)

\(\Rightarrow2C=3C-C=\left(3+3^2+...+3^{11}\right)-\left(1+3+3^2+...+3^{10}\right)\)

\(\Rightarrow2C=3^{11}-1\)

\(\Rightarrow C=\frac{3^{11}-1}{2}\)

Bạn thay vào rùi tính n nha 

9 tháng 1 2017

\(C=1+3+3^2+...+3^{10}\Rightarrow3C=3+3^2+3^3+...+3^{11}\)

\(\Rightarrow3C-C=\left(3+3^2+3^3+...+3^{11}\right)-\left(1+3+3^2+...+3^{10}\right)\)

\(\Rightarrow2C=3^{11}-1\Rightarrow2C+1=3^{11}\Rightarrow n=11\)

11 tháng 9 2016

\(A=1+3+3^2+3^3+...+3^{10}\)

\(3A=3+3^2+3^3+3^4+..+3^{11}\)

\(3A-A=\left(3+3^2+3^3+3^4+..+3^{11}\right)-\left(1+3+3^2+3^3+...+3^{10}\right)\)

\(2A=3^{11}-1\)

\(2A+1=3^{11}-1+1\)

\(2A+1=3^{11}\)

Vậy: \(n=11\)

5 tháng 9 2019

3A=3(1+3+32+.....+310)

3A=3+32+33+34+....+311

3A-A=(3+32+33+34+....+311)-(1+3+32+.....+310)

2A=311-1

=>2A+1=311-1+1=311

Vậy n=11

5 tháng 9 2019

\(A=1+3+3^2+3^3+...+3^{10}\)

\(\Rightarrow3A=3+3^2+3^3+3^4+...+3^{11}\)

\(\Rightarrow3A-A=\left(3+3^2+3^3+...+3^{11}\right)-\left(1+3+3^2+3^3+...+3^{10}\right)\)

\(\Rightarrow2A=3+3^2+3^3+...+3^{11}-1-3-3^2-3^3-...-3^{10}\)

\(\Rightarrow2A=3^{11}-1\)

\(\Rightarrow2A+1=3^{11}-1+1=3^{11}\) (1)

mà : \(2A+1=3^n\) (2)

Từ (1) và (2) \(\Rightarrow3^{11}=3^n\Rightarrow n=11\)

Vậy : \(n=11\) khi  \(2A+1=3^n\)

14 tháng 11 2016

4

Do 288 chia n dư 38=>250 chia hết cho n (1)

                              => n > 38 (2)

Do 414 chia n dư 14=> 400 chia hết cho n (3)

Từ (1), (2), (3)=>n thuộc Ư(250,400;n>39)

=> n=50

14 tháng 11 2016

1

x+15 chia hết cho x+2

x+2 chia hết cho x+2 

=> x+15-(x+2) chia hết ch0 x+2

=>13 chia hết cho x+2

Do x thuộc N => x+2>= 0+2=2

Mà 13 chia hết cho 1 và 13

=> x+2 = 13

=> x=11

20 tháng 7 2019

1) Ta có: \(10\equiv1\left(mod3\right)\Rightarrow10^n\equiv1\left(mod3\right)\Rightarrow10^n-1⋮3\)

Ta có: \(\left(10^n+1\right)\left(10^n+2\right)=\left(10^n+1\right)\left(10^n-1+3\right)\)

Do \(\hept{\begin{cases}10^n-1⋮3\\3⋮3\end{cases}}\Rightarrow\left(10^n+1\right)\left(10^n+2\right)⋮3\)

2) Ta có: Xét: \(1!+2!+3!+4!+5!+...+n!\)

Xét: \(n\ge5\) thì: \(1!+2!+3!+4!+5!+...+n!=33+5!+...+n!\)

Ta có: \(5!=1.2.3.4.5=\left(2.5\right).1.3.4\) có tận cùng bằng 0

Tương tự,ta suy ra được với n>=5 thì n! có tận cùng bằng 5 (do có chứa 2 thừa số 2 và 5)

\(\Rightarrow33+5!+...+n!\) tận cùng bằng 3 (loại vì scp ko có tận cùng bằng 3)

Như vậy, \(n< 5\)

Với \(n=1;1!+2!+3!+...+n!=1\left(TM\right)\)

Với \(n=2;1!+2!=5\left(KTM\right)\)

Với \(n=3;1!+2!+3!=9\left(TM\right)\)

Với \(n=4;1!+2!+3!+4!=33\left(KTM\right)\)

Vậy n bằng 1 hoặc 3

3) Ta có: \(a;b;c;d\in N\Rightarrow a+b+c+d>2\)

Giả sử \(a+b+c+d\) là số nguyên tố. Ta có: \(a+b+c+d=p\)(p nguyên tố) 

\(\Rightarrow a=p-b-c-d\Leftrightarrow ab=pb-b^2-bc-bd\)

\(\Leftrightarrow ab+b^2+bc+bd=pb\)

\(\Leftrightarrow cd+b^2+bc+bd=pb\Rightarrow\left(b+c\right)\left(b+d\right)=pb⋮p\)

Do p nguyên tố \(\Rightarrow\orbr{\begin{cases}b+c⋮p\\b+d⋮p\end{cases}}\Rightarrow\orbr{\begin{cases}b+c>p\\b+d>p\end{cases}}\Rightarrow\orbr{\begin{cases}b+c>a+b+c+d\\b+d>a+b+c+d\end{cases}}\left(vo-ly\right)\)

Vậy a+b+c+d là hợp số 

Ta xét hiệu: \(a^n+b^n+c^n+d^n-a-b-c-d⋮2\)(Fermat nhỏ)

\(\Rightarrow a^n+b^n+c^n+d^n⋮2;a^n+b^n+c^n+d^n>2\Rightarrow a^n+b^n+c^n+d^n\) là hợp số (đpcm) 

22 tháng 7 2019

Girl

Thank you =))

1 tháng 4 2022

3/4 +3 =

25 tháng 2 2016

OLM duyệt nhanh lên nhé!

25 tháng 10 2016

ta có A=1+3+32+33+......+399+3100

=>3A= 3+32+33+34+......+3100+3101

- A=1+3+32+33+.......+399+3100

=> 2A=3101-1 mà 2A+1=3=>3101-1+1

                                           => 3101-3n

                                           => n= 101

k cho mik nha!