Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(Q=\frac{2}{3}.\frac{4}{5}.\frac{6}{7}.....\frac{400}{401}\)
Áp dụng tính chất \(\frac{a}{b}< \frac{a+m}{b+m}\left(a,b,m\inℕ^∗\right)\)ta có
\(\frac{1}{2}< \frac{1+1}{2+1}=\frac{2}{3}\)
\(\frac{2}{3}< \frac{2+1}{3+1}=\frac{3}{4}\)
...
\(\frac{399}{400}< \frac{399+1}{400+1}=\frac{400}{401}\)
\(\Rightarrow\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{399}{400}< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}.....\frac{400}{401}\)
hay P < Q
=> \(P^2< P.Q\)
\(P^2< \frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{399}{400}.\frac{2}{3}.\frac{4}{5}.\frac{6}{7}.....\frac{400}{401}\)
\(P^2< \frac{1.2.3.4.....400}{2.3.4.5.....401}\)
\(P^2< \frac{1}{401}< \frac{1}{400}< \left(\frac{1}{20}\right)^2\)
Vì P và 1/20 có cùng dấu
\(\Rightarrow P< \frac{1}{20}\)
\(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\) Chứng tỏ rằng A < 2
Ta có: 1/22 < 1/1.2
1/32 < 1/2.3
1 /4 2 < 1/3.4
.. .........................
1/502 < 1/49.50
=> A < 1/12 + 1/1.2 + 1/2.3 + 1/3.4+......+1/49.50
=> A < 1 + (1-1/50)
=> A < 1+49/50
=> A < 99/55 <2
=> A < 2
Ta có: 1/22 < 1/1.2
1/32 < 1/2.3
1 /4 2 < 1/3.4
.. .........................
1/502 < 1/49.50
=> A < 1/12 + 1/1.2 + 1/2.3 + 1/3.4+......+1/49.50
=> A < 1 + (1-1/50)
=> A < 1+49/50
=> A < 99/55 <2
=> A < 2
\(=\frac{2008+\left(1+\frac{2007}{2}\right)+...+\left(1+\frac{1}{2008}\right)}{\frac{1}{2}+...\frac{1}{2009}}-2007\)
\(=\frac{1+\frac{2009}{2}+...\frac{2009}{2008}}{\frac{1}{2}+...+\frac{1}{2009}}\)
\(=\frac{\frac{2009}{2009}+\frac{2009}{2}+...+\frac{2009}{2008}}{\frac{1}{2}+...+\frac{1}{2009}}\)
\(=\frac{2009\left(\frac{1}{2}+...+\frac{1}{2009}\right)}{\frac{1}{2}+...+\frac{1}{2009}}=2009\)
2008=1+1+1+...+1 có 2008 số 1
1+(1+2007/2)+(1+2006/3)+...+(1+1/2008)=2009/2009+2009/2+2009/3+...+2009/2008
=2009*(1/2009+1/2+1/3+...+1/2008)=2009*(1/2+1/3+...+1/2009)
ta có 2008+2007/2+...+1/2008
1/2+1/3+..............+1/2009
=2009
\(2A=\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{101}}\)
\(2A-A=\frac{1}{2^{101}}-\frac{1}{2}\)
\(\Rightarrow A=\frac{1}{2^{101}}-\frac{1}{2}\)
\(\Rightarrow A>0\) ( đpcm )
Bài này phải làm như thế này nha lần trước tui làm nhầm sorry
Study well
uk cám ơn bn nhiều