Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.M = 2x2 – 10x + 2y2 + 2xy – 8y + 4038 = (x2 – 10x + 25) +( y2 + 2xy + y2) + ( y2 – 8y + 16) + 3997
= (x-5)2 + (x+y)2 + (y - 4)2 + 3997 = N + 3997
Áp dụng bất đẳng thức Bu- nhi a: (ax+ by + cz)2 \(\le\) (a2+ b2 + c2). (x2 + y2 + z2). Dấu bằng xảy ra khi a/x = b/y = c/z
Ta có: [(5 - x).1 + (x+ y).1 + (y + 4).1]2 \(\le\) [(5 - x)2 + (x+y)2 + (y - 4)2 ].(1+ 1+1) = N .3 = 3.N
<=> 92 = 81 \(\le\) 3.N => N \(\ge\) 27 => 2.M \(\ge\) 27 + 3997 = 4024
=> M \(\ge\)2012
vậy Min M = 2012
khi 5 - x = x+ y = y + 4 => x = 4 ; y = -3
M=(x+y/2-5/2)^2+2.5y/4-4y-25/4-y^2/4+(y^2-4y+2012) (kiem tra phan nay len lam nhap rut gon luon)
M=(x+y/2-5/2)^2+3/4(y^2-10y+25)+(2012-25/4-3.25/4)
M=(x+y/2-5/2)^2+3/4.(y-5)^2+(.....)
GTNN=(.....)
tai: y=5
2x+5-5=0=> x=0
Áp dụng BĐT côsi cho 2 số không âm:
x2+y2\(\ge\)2xy
<=>2x2+2y2\(\ge\)4xy
Dấu "=" xảy ra khi và chỉ khi x=y
x2+4\(\ge\)4x
Dấu "=" xảy ra khi và chỉ khi x=2
y2+4\(\ge\)4y
Dấu "=" xảy ra khi và chỉ khi y=2
=>3x2+3y2+8\(\ge\)4(x+y+xy)=4.8=32
=>P=x2+y2\(\ge\)8
=>Min P=8 xảy ra khi \(\left\{{}\begin{matrix}x=y\\y=2\\x=2\end{matrix}\right.\)<=>x=y=2
Vậy...
không hiểu thì hỏi, thấy đúng thì đúng nha. làm bài này mệt thấy mồ
hoành độ giao điểm A là nghiệm của phương trình:
(3m+2)x+5=-x-1\(\Leftrightarrow3mx+2x+5+x+1=0\Leftrightarrow\left(3m+3\right)x+6=0\Leftrightarrow3\left(m+1\right)x+6=0\Leftrightarrow3\left[\left(m+1\right)x+2\right]=0\)\(\Rightarrow\left(m+1\right)x+2=0\Leftrightarrow x=-\frac{2}{m+1}\); y=-x-1 => \(y=\frac{2}{m+1}+1=\frac{m+3}{m+1}\)
\(y^2+2x-3=\left(\frac{m+3}{m+1}\right)^2-\frac{4}{m+1}-3=\frac{m^2+6m+9-4m-4}{\left(m+1\right)^2}-3=\frac{m^2+2m+5}{\left(m+1\right)^2}-3\)
\(=\frac{\left(m^2+2m+1\right)+4}{\left(m+1\right)^2}-3=\frac{\left(m+1\right)^2+4}{\left(m+1\right)^2}-3=1+\frac{4}{\left(m+1\right)^2}-3=\frac{4}{\left(m+1\right)^2}-2\ge\frac{4}{1}-2=2\).
=> Min =2 <=> m=0
Ta có: P= \(x^2+xy+y^2-2x-3y+2010\)
\(\Leftrightarrow\) 4P= \(4\left(x^2+xy+y^2-2x-3y+2010\right)\)
= \(4x^2+4xy+4y^2-8x-12y+8040\)
= \(\left(4x^2+y^2+4+4xy-8x-8y\right)+3y^2-8y+8036\)
= \(\left(2x+y-2\right)^2+3y^2-8y+\dfrac{16}{3}-\dfrac{16}{3}+8036\)
= \(\left(2x+y-2\right)^2+3\left(y^2-\dfrac{8}{3}y+\dfrac{16}{9}\right)+\dfrac{24092}{3}\)
= \(\left(2x+y-2\right)^2+3\left(y-\dfrac{4}{3}\right)^2+\dfrac{24092}{3}\) \(\geq\) \(\dfrac{24092}{3}\)
\(\Rightarrow\) 4P \(\geq\) \(\dfrac{24092}{3}\) \(\Rightarrow\) P \(\geq\) \(\dfrac{6023}{3}\)
Dấu = xảy ra khi \(\begin{cases} (2x+y-2)^{2}=0\\ (y-\dfrac{4}{3})^{2}=0 \end{cases} \) \(\Leftrightarrow\) \(\begin{cases} 2x+y-2=0\\ y-\dfrac{4}{3}=0 \end{cases} \) \(\Leftrightarrow\) \(\begin{cases} 2x=-(y-2)\\ y=\dfrac{4}{3} \end{cases} \) \(\Leftrightarrow\) \(\begin{cases} 2x=-(\dfrac{4}{3}-2)\\ y=\dfrac{4}{3} \end{cases} \) \(\Leftrightarrow\) \(\begin{cases} x=\dfrac{1}{3}\\ y=\dfrac{4}{3} \end{cases} \)
Từ đó suy ra Min P= \(\dfrac{6023}{3}\) khi \(\begin{cases} x=\dfrac{1}{3}\\ y=\dfrac{4}{3} \end{cases} \)
Chúc bạn học tốt.
-M = x^2+y^2-xy-2x-2y
-4M = 4x^2+4y^2-4xy-8x-8y
= [ (4x^2-4xy+y^2) - 2.(2x-y).2 + 4 ] + (3y^2-12y+12)-16
= [ (2x-y)^2 - 2.(2x-y).2 + 4 ] + 3.(y^2-4y+4) - 16
= (2x-y-2)^2 + 3.(y-2)^2 - 16 >= -16 => M < = 4
Dấu "=" xảy ra <=> 2x-y-2 = 0 và y-2 = 0 <=> x = y = 2
Vậy ............
Tk mk nha
Giá trị min đạt được khi $y=1$ và $x=2$
Lời giải:
PT \(\Leftrightarrow x^2+x(y-5)+(y^2-4y+2023-M)=0(*)\)
Coi đây là pt bậc 2 ẩn $x$
Vì biểu thức $M$ tồn tại đồng nghĩa với $(*)$ có nghiệm nên:
\(\Delta=(y-5)^2-4(y^2-4y+2023-M)\geq 0\)
\(\Leftrightarrow 4M\geq 3y^2-6y+8067\)
Mà: $3y^2-6y+8067=3(y-1)^2+8064\geq 8064$
$\Rightarrow 4M\geq 8064\Rightarrow M\geq 2016$
Vậy $M_{\min}=2016$