K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2016

M=(x+y/2-5/2)^2+2.5y/4-4y-25/4-y^2/4+(y^2-4y+2012) (kiem tra phan nay len lam nhap rut gon luon)

M=(x+y/2-5/2)^2+3/4(y^2-10y+25)+(2012-25/4-3.25/4)

M=(x+y/2-5/2)^2+3/4.(y-5)^2+(.....)

GTNN=(.....)

tai: y=5

2x+5-5=0=> x=0

28 tháng 4 2015

2.M = 2x2 – 10x + 2y2 + 2xy – 8y + 4038 = (x2 – 10x + 25) +( y2 + 2xy + y2) + ( y2 – 8y + 16)  + 3997

= (x-5)2 + (x+y)2 + (y - 4)2 + 3997 = N + 3997

Áp dụng bất đẳng thức Bu- nhi a: (ax+ by + cz)2 \(\le\) (a2+ b2 + c2). (x2 + y2 + z2). Dấu bằng xảy ra khi a/x = b/y = c/z

Ta có: [(5 - x).1 + (x+ y).1 + (y + 4).1]2 \(\le\) [(5 - x)2 + (x+y)2 + (y - 4)2 ].(1+ 1+1) = N .3 = 3.N

<=> 92 = 81 \(\le\) 3.N => N \(\ge\) 27 => 2.M \(\ge\) 27 + 3997 = 4024 

=> M \(\ge\)2012

vậy Min M  = 2012

khi 5 - x = x+ y = y + 4 => x = 4 ; y = -3

 

AH
Akai Haruma
Giáo viên
6 tháng 1 2020

Giá trị min đạt được khi $y=1$ và $x=2$

AH
Akai Haruma
Giáo viên
6 tháng 1 2020

Lời giải:

PT \(\Leftrightarrow x^2+x(y-5)+(y^2-4y+2023-M)=0(*)\)

Coi đây là pt bậc 2 ẩn $x$

Vì biểu thức $M$ tồn tại đồng nghĩa với $(*)$ có nghiệm nên:

\(\Delta=(y-5)^2-4(y^2-4y+2023-M)\geq 0\)

\(\Leftrightarrow 4M\geq 3y^2-6y+8067\)

Mà: $3y^2-6y+8067=3(y-1)^2+8064\geq 8064$

$\Rightarrow 4M\geq 8064\Rightarrow M\geq 2016$

Vậy $M_{\min}=2016$

AH
Akai Haruma
Giáo viên
6 tháng 6 2018

Lời giải:

Ta có:

\(M=x^2-5x+y^2+xy-4y+2014\)

\(\Leftrightarrow x^2+x(y-5)+(y^2-4y+2014-M)=0\)

Coi đây là pt bậc 2 ẩn $x$. Vì pt xác định nên:

\(\Delta=(y-5)^2-4(y^2-4y+2014-M)\geq 0\)

\(\Leftrightarrow 4M\geq 3y^2-6y+8031\)

\(3y^2-6y+8031=3(y-1)^2+8028\geq 8028\)

\(\Rightarrow 4M\geq 8028\Leftrightarrow M\geq 2007\)

Vậy $M_{\min}=2007$ khi $y-1=0$ hay $y=1$ kéo theo $x=2$

12 tháng 5 2018

a) \(P=\dfrac{\left(x^2+2xy+9y^2\right)-\left(x+3y-2\sqrt{xy}\right)2\sqrt{xy}}{x+3y-2\sqrt{xy}}\)

\(=\dfrac{\left(x^2+6xy+9y^2\right)-\left(x+3y\right)2\sqrt{xy}}{x+3y-2\sqrt{xy}}\)

\(=\dfrac{\left(x+3y\right)^2-\left(x+3y\right)2\sqrt{xy}}{x+3y-2\sqrt{xy}}\)

\(=\dfrac{\left(x+3y\right)\left(x+3y-2\sqrt{xy}\right)}{x+3y-2\sqrt{xy}}\)

\(P=x+3y\)

b) \(\dfrac{P}{\sqrt{xy}+y}=\dfrac{x+3y}{\sqrt{xy}+y}=\dfrac{\left(x+3y\right):y}{\left(\sqrt{xy}+y\right):y}=\dfrac{\dfrac{x}{y}+3}{\sqrt{\dfrac{x}{y}}+1}\)

Đặt \(t=\sqrt{\dfrac{x}{y}}>0\)\(\dfrac{P}{\sqrt{xy}+y}=Q\) thì \(Q=\dfrac{t^2+3}{t+1}=\dfrac{\left(t-1\right)^2+2\left(t+1\right)}{t+1}=2+\dfrac{\left(t-1\right)^2}{t+1}\ge2\)

\(Q_{min}=2\Leftrightarrow t=1\Leftrightarrow x=y\)

6 tháng 6 2018

câu 1

x^2 -5x +y^2+xy -4y +2014 

=(y^2+xy +1/4x^2) -4(y+1/2x)+4 +3/4x^2-3x+2010

=(y+1/2x-2)^2 +3/4(x^2-4x+4)+2007

=(y+1/2x-2)^2 +3/4(x-2)^2 +2007

GTNN là 2007<=> x=2 và y=1

24 tháng 8 2019

Có \(\left(x-y\right)^2\ge0\)

\(\Rightarrow\left(x+y\right)^2\ge4xy\)

\(\Rightarrow\left(x+y\right)^2\ge4\) (Vì xy = 1)

\(\Rightarrow|x+y|\ge2\)

Dấu "=" xả ra khi \(\orbr{\begin{cases}x=y=1\\x=y=-1\end{cases}}\)

Xét x = y = 1 ta được:

\(M=\frac{3}{4}+\left(\sqrt{5.1^{2016}+4.1}-2\right)^{2017}-\frac{1^{2015}}{1^{2016}}\)

\(M=\frac{3}{4}\)

Xét x = y = -1 ta được:

\(M=\frac{3}{4}+\left(\sqrt{5.\left(-1\right)^{2016}+4.\left(-1\right)}\right)^{2017}-\frac{\left(-1\right)^{2015}}{\left(-1\right)^{2016}}\)

\(M=\frac{7}{4}+3^{2017}\)

Vậy với \(xy=1\)và \(|x+y|\)đạt giá trị nhỏ nhất thì M nhận 2 giá trị là \(\orbr{\begin{cases}M=\frac{3}{4}\\M=\frac{7}{4}+3^{2017}\end{cases}}\)

24 tháng 8 2019

Có |x+y| lớn hơn hoặc bằng 

|x|+|y| dấu bằng sảy ra <=>

xy lớn hơn hoặc bằng 0

mà xy=1 => |x+y|=|x|+|y| (1)

Ta lại có:|x|+|y|-2\(\sqrt{xy}=\)\(\left(\sqrt{x}-\sqrt{y}\right)^2\)Lớn hơn hoặc bằng 0

=>|x|+|y| lớn hơn hoặc bằng \(2\sqrt{xy}=2\left(2\right)\)

Từ (1) và (2)

=>|x+y| lớn hơn hoặc bằng 2

=>MIN |x+y|=2

Dấu bằng sảy ra 

<=>|x+y|=2

Hay |x|+|y|=\(2\sqrt{xy}\)

=>\(\left(\sqrt{x}-\sqrt{y}\right)^2=0\)

=>\(\sqrt{x}=\sqrt{y}\Rightarrow x=y\)

Mà |x+y|=2

TH1: x+y=2=>x=y=1

Thay vào M ta tính được M=3/4

TH2:x+y=-2 =>  x=y=-1

Thay vào M ta được

M=3/4

Vậy: M=3/4

13 tháng 6 2020

Bài 2:

Ta có: M = a2+ab+b2 -3a-3b-3a-3b +2001

=> 2M = ( a2 + 2ab + b2) -4.(a+b) +4 + (a2 -2a+1)+(b2 -2b+1) + 3996

2M= ( a+b-2)2 + (a-1)2 +(b-1)+ 3996

=> MinM = 1998 tại a=b=1

13 tháng 6 2020

Câu 3: 

Ta có: P= x2 +xy+y2 -3.(x+y) + 3

=> 2P = ( x2 + 2xy +y2) -4.(x+y) + 4 + (x2 -2x+1) +(y2 -2y+1)

2P = ( x+y-2)2 +(x-1)2+(y-1)2

=> Min= 0 tại x=y=1