K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(Q=\dfrac{a}{\sqrt{a^2-b^2}}-\dfrac{\sqrt{a^2-b^2}+a}{\sqrt{a^2-b^2}}\cdot\dfrac{a-\sqrt{a^2-b^2}}{b}\)

\(=\dfrac{ab}{b\left(\sqrt{a^2-b^2}\right)}-\dfrac{a^2-\left(a^2-b^2\right)}{b\sqrt{a^2-b^2}}\)

\(=\dfrac{ab-a^2+a^2-b^2}{b\sqrt{a^2-b^2}}=\dfrac{ab-b^2}{b\sqrt{a^2-b^2}}=\dfrac{a-b}{\sqrt{a^2-b^2}}\)

b: Khi a=3b thì \(Q=\dfrac{3b-b}{\sqrt{9b^2-b^2}}=\dfrac{2b}{\sqrt{8b^2}}=\dfrac{2b}{2\sqrt{2}\cdot b}=\dfrac{1}{\sqrt{2}}\)

22 tháng 4 2017

a)

Q=aa2b2(1+aa2b2):baa2b2=aa2b2a2(a2b2)ba2b2=aa2b2a2a2+b2ba2b2=aba2

28 tháng 4 2021

bạn tham khảo nha : https://loigiaihay.com/bai-76-trang-41-sgk-toan-9-tap-1-c44a26988.html

17 tháng 5 2021
a) a √ a 2 − b 2 − ( 1 + a √ a 2 − b 2 ) : b a − √ a 2 − b 2 = a √ a 2 − b 2 − a + √ a 2 − b 2 √ a 2 − b 2 ⋅ a − √ a 2 − b 2 b = a √ a 2 − b 2 − a 2 − ( √ a 2 − b 2 ) 2 b √ a 2 − b 2 = a √ a 2 − b 2 − a 2 − ( a 2 − b 2 ) b √ a 2 − b 2 = a √ a 2 − b 2 − b 2 b ⋅ √ a 2 − b 2 = a √ a 2 − b 2 − b √ a 2 − b 2 = a − b √ a 2 − b 2 = √ a − b ⋅ √ a − b √ a − b ⋅ √ a + b (do a > b > 0 )$ = √ a − b √ a + b Vậy Q = √ a − b √ a + b . b) Thay a = 3 b vào Q = √ a − b √ a + b , ta được: Q = √ 3 b − b √ 3 b + b = √ 2 b √ 4 b = √ 2 b √ 2 ⋅ √ 2 b = 1 √ 2 = √ 2 2 .

\(a,Q=\frac{a}{\sqrt{a^2-b^2}}-\left(1+\frac{a}{\sqrt{a^2-b^2}}\right):\left(\frac{b}{a-\sqrt{a^2-b^2}}\right)\)

\(=\frac{a}{\sqrt{a^2-b^2}}-\left(\frac{\sqrt{a^2-b^2}+a}{\sqrt{a^2-b^2}}\right):\frac{b}{a-\sqrt{a^2+b^2}}\)
\(=\frac{a}{\sqrt{a^2-b^2}}-\frac{a+\sqrt{a^2-b^2}}{\sqrt{a^2-b^2}}.\frac{a-\sqrt{a^2-b^2}}{b}\)\(=\frac{a}{\sqrt{a^2-b^2}}-\frac{a^2-\left(a^2-b^2\right)}{b\sqrt{a^2-b^2}}\)

\(=\frac{ab-a^2+a^2-b^2}{b\sqrt{a^2-b^2}}\)

\(=\frac{b\left(a-b\right)}{b\sqrt{a^2-b^2}}=\frac{\left(a-b\right)}{\sqrt{\left(a-b\right)\left(a+b\right)}}=\frac{\sqrt{a-b}}{\sqrt{a+b}}\)

\(b.\frac{\sqrt{3b-b}}{\sqrt{3b+b}}=\frac{\sqrt{2b}}{\sqrt{4b}}=\frac{\sqrt{2}.\sqrt{b}}{2\sqrt{b}}=\frac{\sqrt{2}}{2}\)

27 tháng 9 2020

:") Làm bừa nhezzz

a) \(Q=\frac{a}{\sqrt{a^2-b^2}}-\left(1+\frac{a}{\sqrt{a^2-b^2}}\right):\frac{b}{a-\sqrt{a^2}-b^2}\)

\(=\frac{a}{\sqrt{a^2-b^2}}-\frac{a+\sqrt{a^2-b^2}}{\sqrt{a^2-b^2}}.\frac{a-\sqrt{a^2-b^2}}{b}\)

\(=\frac{a}{\sqrt{a^2-b^2}}-\frac{a^2-\left(\sqrt{a^2-b^2}\right)^2}{b.\left(\sqrt{a^2-b^2}\right)}\)

\(=\frac{a}{\sqrt{a^2-b^2}}-\left(\frac{a^2-\left(a^2-b^2\right)}{b.\left(\sqrt{a^2-b^2}\right)}\right)\)

\(=\frac{a}{\sqrt{a^2-b^2}}-\frac{b^2}{b\sqrt{a^2-b^2}}\)

\(=\frac{a}{\sqrt{a^2-b^2}}-\frac{b}{\sqrt{a^2-b^2}}\)

\(=\frac{a-b}{\sqrt{a^2-b^2}}=\frac{a-b}{\sqrt{\left(a-b\right)\left(a+b\right)}}=\frac{\sqrt{a-b}}{\sqrt{a+b}}\)

b) Thay a = 3b vào , ta được :

\(Q=\frac{\sqrt{3b-b}}{\sqrt{3b+b}}=\frac{\sqrt{2b}}{\sqrt{4b}}=\sqrt{\frac{2b}{4b}}=\sqrt{\frac{1}{2}}=\frac{\sqrt{2}}{2}\)

27 tháng 5 2017

Căn bậc hai. Căn bậc ba

27 tháng 9 2020

a. Đề là \(Q=\frac{a}{\sqrt{a^2-b^2}}-\left(1+\frac{a}{\sqrt{a^2-b^2}}\right):\frac{b}{a-\sqrt{a^2-b^2}}\) ?

\(\Leftrightarrow Q=\frac{a}{\sqrt{a^2-b^2}}-\frac{a+\sqrt{a^2-b^2}}{\sqrt{a^2-b^2}}.\frac{a-\sqrt{a^2-b^2}}{b}\)

\(\Leftrightarrow Q=\frac{a}{\sqrt{a^2-b^2}}-\frac{\left(a+\sqrt{a^2-b^2}\right)\left(a-\sqrt{a^2-b^2}\right)}{b\sqrt{a^2-b^2}}\)

\(\Leftrightarrow Q=\frac{a}{\sqrt{a^2-b^2}}-\frac{a^2-\left(a^2-b^2\right)}{b\sqrt{a^2-b^2}}\)

\(\Leftrightarrow Q=\frac{a}{\sqrt{a^2-b^2}}-\frac{b^2}{b\sqrt{a^2-b^2}}\)

\(\Leftrightarrow Q=\frac{a}{\sqrt{a^2-b^2}}-\frac{b}{\sqrt{a^2-b^2}}\)

\(\Leftrightarrow Q=\frac{a-b}{\sqrt{\left(a-b\right)\left(a+b\right)}}=\sqrt{\frac{a-b}{a+b}}\)

b. Thay a = 3b vào Q, ta được : \(Q=\sqrt{\frac{3b-b}{3b+b}}=\sqrt{\frac{2b}{4b}}=\sqrt{\frac{1}{2}}\)

6 tháng 9 2021

a. \(Q=\dfrac{a}{\sqrt{a^2-b^2}}-\left(1+\dfrac{a}{\sqrt{a^2-b^2}}\right):\dfrac{b}{a-\sqrt{a^2-b^2}}\)

\(=\dfrac{a}{\sqrt{a^2-b^2}}-\dfrac{a+\sqrt{a^2-b^2}}{\sqrt{a^2-b^2}}.\dfrac{a-\sqrt{a^2-b^2}}{b}\)

\(=\dfrac{a}{\sqrt{a^2-b^2}}-\dfrac{b}{\sqrt{a^2-b^2}}=\dfrac{a-b}{\sqrt{a^2-b^2}}=\dfrac{\sqrt{a-b}}{\sqrt{a+b}}\)

b. Thay \(a=3b\) vào \(Q\), ta được

\(Q=\dfrac{\sqrt{3b-b}}{\sqrt{3b+b}}=\dfrac{\sqrt{2b}}{\sqrt{4b}}=\dfrac{1}{\sqrt{2}}\)

 

a: \(=\dfrac{\sqrt{a}-1}{\sqrt{a}\left(a-\sqrt{a}+1\right)}\cdot\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{1}\)

\(=a-1\)

b: \(=\dfrac{\sqrt{a}+\sqrt{b}-1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}\cdot\left(\dfrac{\sqrt{b}}{\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)}+\dfrac{\sqrt{b}}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}\right)\)

\(=\dfrac{\sqrt{a}+\sqrt{b}-1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}\cdot\dfrac{\sqrt{ab}+b+\sqrt{ab}-b}{\sqrt{a}\left(a-b\right)}\)

\(=\dfrac{\sqrt{a}+\sqrt{b}-1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}=\dfrac{1}{\sqrt{a}}\)

c: \(=\dfrac{a\sqrt{b}+b}{a-b}\cdot\sqrt{\dfrac{ab+b^2-2b\sqrt{ab}}{a^2+2a\sqrt{b}+b}}\cdot\left(\sqrt{a}+\sqrt{b}\right)\)

\(=\dfrac{\sqrt{b}\left(a+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\cdot\sqrt{\dfrac{b\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(a+\sqrt{b}\right)^2}}\)

\(=\dfrac{\sqrt{b}\left(a+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\cdot\dfrac{\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}{a+\sqrt{b}}=b\)