Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(P=\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}+1}{\sqrt{x}-3}-\frac{3-11\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)-\left(3-11\sqrt{x}\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{2x-6\sqrt{x}+x+4\sqrt{x}+3-3+11\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{3x+9\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{3\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{3\sqrt{x}}{\sqrt{x}-3}\)
b/ \(P< 1\Rightarrow\frac{3\sqrt{x}}{\sqrt{x}-3}< 1\Rightarrow\frac{2\sqrt{x}+3}{\sqrt{x}-3}< 0\)
Xét 2 trường hợp:
- \(\hept{\begin{cases}2\sqrt{x}+3>0\\\sqrt{x}-3< 0\end{cases}\Rightarrow\hept{\begin{cases}2\sqrt{x}>-3\\\sqrt{x}< 3\end{cases}\Rightarrow}\hept{\begin{cases}\sqrt{x}>-\frac{3}{2}\\\sqrt{x}< 3\end{cases}}\Rightarrow-\frac{3}{2}< \sqrt{x}< 3}\)
\(\Rightarrow-\frac{9}{4}< x< 9\)
- \(\hept{\begin{cases}2\sqrt{x}+3< 0\\\sqrt{x}>3\end{cases}\Rightarrow\hept{\begin{cases}\sqrt{x}< -\frac{3}{2}\\\sqrt{x}>3\end{cases}}}\) (vô lí)
Vậy -9/4 < x < 9
Lời giải:
\(P=\frac{x+2}{(\sqrt{x})^3-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}-\frac{\sqrt{x}+1}{(\sqrt{x}-1)(\sqrt{x}+1)}\)
\(\frac{x+2}{\sqrt{x^3}-1}+\frac{(\sqrt{x}+1)(\sqrt{x}-1)}{(\sqrt{x}-1)(x+\sqrt{x}+1)}-\frac{1}{\sqrt{x}-1}\)
\(=\frac{x+2}{\sqrt{x^3}-1}+\frac{x-1}{\sqrt{x^3}-1}-\frac{1}{\sqrt{x}-1}\)
\(=\frac{x+2+x-1}{\sqrt{x^3}-1}-\frac{1}{\sqrt{x}-1}\)
\(=\frac{2x+1}{\sqrt{x^3}-1}-\frac{1}{\sqrt{x}-1}=\frac{2x+1}{\sqrt{x^3}-1}-\frac{x+\sqrt{x}+1}{\sqrt{x^3}-1}\)
\(=\frac{2x+1-(x+\sqrt{x})}{\sqrt{x^3}-1}=\frac{x-\sqrt{x}}{\sqrt{x^3}-1}\)
\(=\frac{\sqrt{x}(\sqrt{x}-1)}{(\sqrt{x}-1)(x+\sqrt{x}+1)}=\frac{\sqrt{x}}{x+\sqrt{x}+1}\)
b) \(P-\frac{1}{3}=\frac{\sqrt{x}}{x+\sqrt{x}+1}-\frac{1}{3}=\frac{2\sqrt{x}-(x+1)}{3(x+\sqrt{x}+1)}\)
\(=\frac{-(\sqrt{x}-1)^2}{3(x+\sqrt{x}+1)}\)
Với \(x\neq 1, x\geq 0\Rightarrow -(\sqrt{x}-1)^2< 0; x+\sqrt{x}+1>0\)
Do đó: \(P-\frac{1}{3}< 0\Rightarrow P< \frac{1}{3}\)
ĐKXĐ: \(x\ge0;x\ne9\)
\(P=\left(\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{x-9}+\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{x-9}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\right)\)
\(P=\left(\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{x-9}\right)\left(\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\right)\)
\(P=\left(\dfrac{-3\sqrt{x}-3}{x-3}\right)\left(\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\right)=\dfrac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\left(\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\right)\)
\(P=\dfrac{-3}{\sqrt{x}+3}\)
b/ Do \(-3< 0\Rightarrow P_{min}\) khi \(\sqrt{x}+3\) nhỏ nhất
Mà \(\sqrt{x}+3\ge3\Rightarrow P_{min}=\dfrac{-3}{3}=-1\) khi \(\sqrt{x}+3=3\Leftrightarrow x=0\)
Vậy với \(x=0\) thì P đạt GTNN
a) \(P=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)=\left[\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\dfrac{3x+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right]:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}=\left[\dfrac{2x-6\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\dfrac{x+3\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\dfrac{3x+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right]:\dfrac{\sqrt{x}+1}{\sqrt{x}-3}=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{\sqrt{x}-3}{\sqrt{x}+1}=\dfrac{-3\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{\sqrt{x}-3}{\sqrt{x}+1}=\dfrac{-3\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}=\dfrac{-3}{\sqrt{x}+3}\)
b) Ta có \(\sqrt{x}\ge0\Leftrightarrow\sqrt{x}+3\ge3\Leftrightarrow\dfrac{-3}{\sqrt{x}+3}\ge-1\)
Dấu bằng xảy ra khi x=0
Vậy x=0 thì P đạt GTNN là -1
a) Để biểu thức P xác định thì \(\left\{{}\begin{matrix}x\ge0\\x\ne9\end{matrix}\right.\)
Vậy ĐKXĐ:x\(\ge0\),x\(\ne9\)
\(P=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)=\left[\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\dfrac{3x+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right]:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}=\left[\dfrac{2x-6\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\dfrac{x+3\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\dfrac{3x+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right]:\dfrac{\sqrt{x}+1}{\sqrt{x}-3}=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{\sqrt{x}-3}{\sqrt{x}+1}=\dfrac{\left(-3\sqrt{x}-3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}=\dfrac{-3\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}=\dfrac{-3}{\sqrt{x}+3}\)
b) Ta có \(P< \dfrac{1}{2}\Leftrightarrow\dfrac{-3}{\sqrt{x}+3}< \dfrac{1}{2}\Leftrightarrow-6< \sqrt{x}+3\Leftrightarrow\sqrt{x}>-9\)
Vì \(\sqrt{x}\ge0\) và 0>-9
Vậy \(x\ge0\)
Kết hợp với ĐKXĐ, Vậy \(x\ge0\) và \(x\ne9\) thì P<\(\dfrac{1}{2}\)
Bài 1:
a: \(B=\dfrac{\sqrt{x}+x+\sqrt{x}-x}{1-x}\cdot\dfrac{x-1}{3-\sqrt{x}}\)
\(=\dfrac{2\sqrt{x}}{\sqrt{x}-3}\)
b: Để B=-1 thì \(2\sqrt{x}=-\sqrt{x}+3\)
=>3 căn x=3
=>căn x=1
hay x=1(loại)
Bài 2:
a: \(A=\dfrac{15\sqrt{x}-11}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}-\dfrac{\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}-\dfrac{\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-5\sqrt{x}+1}{\sqrt{x}+3}\)
b: Để A=1/2 thì \(\dfrac{-5\sqrt{x}+1}{\sqrt{x}+3}=\dfrac{1}{2}\)
\(\Leftrightarrow-10\sqrt{x}+2=\sqrt{x}+3\)
hay \(x\in\varnothing\)
\(a.A=\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}=\dfrac{15\sqrt{x}-11-\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{15\sqrt{x}-11-3x-7\sqrt{x}+6-2x-\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{\left(\sqrt{x}-1\right)\left(2-5\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{2-5\sqrt{x}}{\sqrt{x}+3}\)
\(\left(x\ge0;x\ne1\right)\)
\(b.A=\dfrac{1}{2}\Leftrightarrow\dfrac{2-5\sqrt{x}}{\sqrt{x}+3}-\dfrac{1}{2}=0\)
\(\Leftrightarrow\dfrac{4-10\sqrt{x}-\sqrt{x}-3}{2\left(\sqrt{x}+3\right)}=0\)
\(\Leftrightarrow-11\sqrt{x}+1=0\)
\(\Leftrightarrow x=\dfrac{1}{121}\left(TM\right)\)
KL...........
Bài 2:
a: \(\sqrt{ax}+\sqrt{by}-\sqrt{bx}-\sqrt{ay}\)
\(=\sqrt{a}\left(\sqrt{x}-\sqrt{y}\right)-\sqrt{b}\left(\sqrt{x}-\sqrt{y}\right)\)
\(=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{a}-\sqrt{b}\right)\)
b: \(\sqrt{a-b}-\sqrt{a^2-b^2}\)
\(=\sqrt{a-b}-\sqrt{a-b}\cdot\sqrt{a+b}\)
\(=\sqrt{a-b}\left(1-\sqrt{a+b}\right)\)