Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(Q=\dfrac{15\sqrt{x}-11-3x-7\sqrt{x}+6-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-3x+8\sqrt{x}-5-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-5\sqrt{x}+2}{\left(\sqrt{x}+3\right)}\)
b: Để Q=1/2 thì \(\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}=\dfrac{1}{2}\)
=>-10căn x+4=căn x+3
=>-11 căn x=-1
=>x=1/121
Bài 1:
a: \(A=\left(\sqrt{x}+\sqrt{y}-\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\right)\cdot\dfrac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}\)
\(=\dfrac{x+2\sqrt{xy}+y-x-\sqrt{xy}-y}{\sqrt{x}+\sqrt{y}}\cdot\dfrac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}\)
\(=\dfrac{\sqrt{xy}}{x-\sqrt{xy}+y}\)
b: \(\sqrt{xy}>=0;x-\sqrt{xy}+y>0\)
Do đó: A>=0
a: \(=\sqrt{3}+1-\sqrt{3}=1\)
b: \(=\sqrt{\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)^2}}=\dfrac{\left|\sqrt{x}-1\right|}{\sqrt{x}+1}\)
c: Sửa đề:\(\dfrac{x-1}{\sqrt{y}-1}\cdot\sqrt{\dfrac{y-2\sqrt{y}+1}{\left(x-1\right)^4}}\)
\(=\dfrac{x-1}{\sqrt{y}-1}\cdot\dfrac{\sqrt{y}-1}{\left(x-1\right)^2}=\dfrac{1}{\left(x-1\right)}\)
Bài 1:
a: \(B=\dfrac{\sqrt{x}+x+\sqrt{x}-x}{1-x}\cdot\dfrac{x-1}{3-\sqrt{x}}\)
\(=\dfrac{2\sqrt{x}}{\sqrt{x}-3}\)
b: Để B=-1 thì \(2\sqrt{x}=-\sqrt{x}+3\)
=>3 căn x=3
=>căn x=1
hay x=1(loại)
Bài 1:
a)Với x > 0;x ≠ 4 ta có:
\(\left(\dfrac{1}{x-4}-\dfrac{1}{x+4\sqrt{x}+4}\right)\cdot\dfrac{x+2\sqrt{x}}{\sqrt{x}}\)
\(=\left(\dfrac{1}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\dfrac{1}{\left(\sqrt{x}+2\right)^2}\right)\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}}\)
\(=\dfrac{1}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\left(\sqrt{x}+2\right)-\dfrac{1}{\left(\sqrt{x}+2\right)^2}\cdot\left(\sqrt{x}+2\right)\)
\(=\dfrac{1}{\sqrt{x}-2}-\dfrac{1}{\sqrt{x}+2}=\dfrac{\left(\sqrt{x}+2\right)-\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{4}{x-4}\)
c)\(\left(\dfrac{\sqrt{b}}{a-\sqrt{ab}}-\dfrac{\sqrt{a}}{\sqrt{ab}-b}\right)\left(a\sqrt{b}-b\sqrt{a}\right)\)
\(=\left(\dfrac{\sqrt{b}}{\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)}-\dfrac{\sqrt{a}}{\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}\right)\cdot\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)\)
\(=\dfrac{b-a}{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}\cdot\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)=b-a\)
Bài 2:
a)Với a > 0;a ≠ 1;a ≠ 2 ta có
\(P=\left(\dfrac{\sqrt{a}^3-1}{\sqrt{a}\left(\sqrt{a}-1\right)}-\dfrac{\sqrt{a}^3+1}{\sqrt{a}\left(\sqrt{a}+1\right)}\right)\cdot\dfrac{a-2}{a+2}\)
\(=\left(\dfrac{a+\sqrt{a}+1}{\sqrt{a}}-\dfrac{a-\sqrt{a}+1}{\sqrt{a}}\right)\cdot\dfrac{a-2}{a+2}\)
\(=\dfrac{a+\sqrt{a}+1-a+\sqrt{a}-1}{\sqrt{a}}\cdot\dfrac{a-2}{a+2}\)
\(=\dfrac{2\sqrt{a}}{\sqrt{a}}\cdot\dfrac{a-2}{a+2}=\dfrac{2\left(a-2\right)}{a+2}\)
b)Ta có:
\(P=\dfrac{2\left(a-2\right)}{a+2}=\dfrac{2a-4}{a+2}=\dfrac{2\left(a+2\right)-8}{a+2}=2-\dfrac{8}{a+2}\)
P nguyên khi \(2-\dfrac{8}{a+2}\) nguyên⇒\(\dfrac{8}{a+2}\) nguyên⇒\(a+2\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
\(TH1:a+2=1\Rightarrow a=-1\left(loai\right)\)
\(TH2:a+2=-1\Rightarrow a=-3\left(loai\right)\)
\(TH3:a+2=2\Rightarrow a=0\left(loai\right)\)
\(TH4:a+2=-2\Rightarrow a=-4\left(loai\right)\)
\(TH5:a+2=4\Rightarrow a=2\left(loai\right)\)
\(TH6:a+2=-4\Rightarrow a=-6\left(loai\right)\)
\(TH7:a+2=8\Rightarrow a=6\left(tm\right)\)
\(TH8:a+2=-8\Rightarrow a=-10\left(loai\right)\)
Vậy a = 6
\(1.a.A=\left(1-\dfrac{\sqrt{x}}{1+\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}+\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)=\dfrac{1}{\sqrt{x}+1}:\dfrac{x-9-x+4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\dfrac{1}{\sqrt{x}+1}.\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{\sqrt{x}-3}=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\left(x\ge0;x\ne4;x\ne9\right)\)
\(b.A< 0\Leftrightarrow\dfrac{\sqrt{x}-2}{\sqrt{x}+1}< 0\)
\(\Leftrightarrow\sqrt{x}-2< 0\)
\(\Leftrightarrow x< 4\)
Kết hợp với ĐKXĐ , ta có : \(0\le x< 4\)
KL............
\(2.\) Tương tự bài 1.
\(3a.A=\dfrac{1}{x-\sqrt{x}+1}=\dfrac{1}{x-2.\dfrac{1}{2}\sqrt{x}+\dfrac{1}{4}+\dfrac{3}{4}}=\dfrac{1}{\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\le\dfrac{4}{3}\)
\(\Rightarrow A_{Max}=\dfrac{4}{3}."="\Leftrightarrow x=\dfrac{1}{4}\)
Bài 2:
a: \(A=\dfrac{15\sqrt{x}-11}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}-\dfrac{\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}-\dfrac{\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-5\sqrt{x}+1}{\sqrt{x}+3}\)
b: Để A=1/2 thì \(\dfrac{-5\sqrt{x}+1}{\sqrt{x}+3}=\dfrac{1}{2}\)
\(\Leftrightarrow-10\sqrt{x}+2=\sqrt{x}+3\)
hay \(x\in\varnothing\)
Bài 2:
a: \(A=\left(5+\sqrt{5}\right)\left(\sqrt{5}-2\right)+\dfrac{\sqrt{5}\left(\sqrt{5}+1\right)}{4}-\dfrac{3\sqrt{5}\left(3-\sqrt{5}\right)}{4}\)
\(=-5+3\sqrt{5}+\dfrac{5+\sqrt{5}-9\sqrt{5}+15}{4}\)
\(=-5+3\sqrt{5}+5-2\sqrt{5}=\sqrt{5}\)
b: \(B=\left(\dfrac{x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+3\right)}\right):\dfrac{x+3\sqrt{x}-2\left(\sqrt{x}+3\right)+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{x+3\sqrt{x}+6-2\sqrt{x}-6}=1\)
Lời giải:
a)
Ta có: \(\frac{1}{\sqrt{3}+2}+\frac{1}{\sqrt{3}-2}=\frac{\sqrt{3}-2+\sqrt{3}+2}{(\sqrt{3}+2)(\sqrt{3}-2)}=\frac{2\sqrt{3}}{3-4}=-2\sqrt{3}\)
Để \(B=\frac{1}{\sqrt{3}+2}+\frac{1}{\sqrt{3}-2}\Leftrightarrow \frac{2}{\sqrt{x}-2}=-2\sqrt{3}\)
\(\Leftrightarrow \frac{1}{\sqrt{x}-2}=-\sqrt{3}\)
\(\Leftrightarrow\sqrt{x}-2=\frac{-1}{\sqrt{3}}\)
\(\Leftrightarrow \sqrt{x}=2-\frac{1}{\sqrt{3}}\Rightarrow x=(2-\frac{1}{\sqrt{3}})^2=\frac{13-4\sqrt{3}}{3}\)
b)
ĐK: \(x\geq 0; x\neq 4\)
\(A=\frac{\sqrt{x}}{x-4}+\frac{1}{\sqrt{x}-2}=\frac{\sqrt{x}}{x-4}+\frac{\sqrt{x}+2}{(\sqrt{x}-2)(\sqrt{x}+2)}=\frac{\sqrt{x}}{x-4}+\frac{\sqrt{x}+2}{x-4}=\frac{2\sqrt{x}+2}{x-4}\)
\(P=\frac{B}{A}=\frac{2}{\sqrt{x}-2}:\frac{2(\sqrt{x}+1)}{x-4}=\frac{2(x-4)}{2(\sqrt{x}-2)(\sqrt{x}+1)}\)
\(=\frac{(\sqrt{x}+2)(\sqrt{x}-2)}{(\sqrt{x}-2)(\sqrt{x}+1)}=\frac{\sqrt{x}+2}{\sqrt{x}+1}\)
c) Thêm ĐK: \(x\geq 1\)
Từ biểu thức P vừa tìm được:
\(P(\sqrt{x}+1)-\sqrt{x}+2\sqrt{x-1}=2x-2\sqrt{2x}+4\)
\(\Leftrightarrow \frac{\sqrt{x}+2}{\sqrt{x}+1}.(\sqrt{x}+1)-\sqrt{x}+2\sqrt{x-1}=2x-2\sqrt{2x}+4\)
\(\Leftrightarrow \sqrt{x}+2-\sqrt{x}+2\sqrt{x-1}=2x-2\sqrt{2x}+4\)
\(\Leftrightarrow 2\sqrt{x-1}=2x-2\sqrt{2x}+2\)
\(\Leftrightarrow (\sqrt{x-1}-1)^2+(\sqrt{x}-\sqrt{2})^2=0\)
Vì \((\sqrt{x-1}-1)^2, (\sqrt{x}-\sqrt{2})^2\geq 0, \forall x\in \text{ĐKXĐ}\)
\(\Rightarrow (\sqrt{x-1}-1)^2+(\sqrt{x}-\sqrt{2})^2\geq 0\). Dấu bằng xảy ra khi :
\(\left\{\begin{matrix} \sqrt{x-1}-1=0\\ \sqrt{x}-\sqrt{2}=0\end{matrix}\right.\Leftrightarrow x=2\) (thỏa mãn)
Vậy..........
\(a.A=\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}=\dfrac{15\sqrt{x}-11-\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{15\sqrt{x}-11-3x-7\sqrt{x}+6-2x-\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{\left(\sqrt{x}-1\right)\left(2-5\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{2-5\sqrt{x}}{\sqrt{x}+3}\)
\(\left(x\ge0;x\ne1\right)\)
\(b.A=\dfrac{1}{2}\Leftrightarrow\dfrac{2-5\sqrt{x}}{\sqrt{x}+3}-\dfrac{1}{2}=0\)
\(\Leftrightarrow\dfrac{4-10\sqrt{x}-\sqrt{x}-3}{2\left(\sqrt{x}+3\right)}=0\)
\(\Leftrightarrow-11\sqrt{x}+1=0\)
\(\Leftrightarrow x=\dfrac{1}{121}\left(TM\right)\)
KL...........
Cảm ơn nhiều nha :)