K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(C=\left(\dfrac{2x^2+1}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{1}{\left(x-1\right)\left(x^2+x+1\right)}\right):\dfrac{x^2+x+1-x^2+2}{x^2+x+1}\)

\(=\dfrac{2x^2+1-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{x^2+x+1}{x+3}\)

\(=\dfrac{x^2-x}{\left(x-1\right)}\cdot\dfrac{1}{x+3}=\dfrac{x}{x+3}\)

b: Để C là số nguyên dương thì \(\left\{{}\begin{matrix}x⋮x+3\\\dfrac{x}{x+3}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+3\in\left\{1;-1;3;-3\right\}\\x\in\left(-\infty;-3\right)\cup\left(0;+\infty\right)\end{matrix}\right.\)

\(\Leftrightarrow x\in\left\{-4;-6\right\}\)

2 tháng 5 2018

khocroikhocroikhocroihiha

2 tháng 5 2018

Câu 1 :

a) Rút gọn P :

\(P=\dfrac{x+1}{3x-x^2}:\left(\dfrac{3+x}{3-x}-\dfrac{3-x}{3+x}-\dfrac{12x^2}{x^2-9}\right)\)

\(P=\dfrac{x+1}{x\left(3-x\right)}:\left[\dfrac{\left(3+x\right)^2}{\left(3-x\right)\left(3+x\right)}-\dfrac{\left(3-x\right)^2}{\left(3-x\right)\left(3+x\right)}-\dfrac{12x^2}{\left(3-x\right)\left(3+x\right)}\right]\)

\(P=\dfrac{x+1}{x\left(3-x\right)}:\left(\dfrac{9+6x+x^2-9+6x-x^2-12x^2}{\left(3-x\right)\left(3+x\right)}\right)\)

\(P=\dfrac{x+1}{x\left(3-x\right)}:\dfrac{12x-12x^2}{\left(3-x\right)\left(x+3\right)}\)

\(P=\dfrac{x+1}{x\left(3-x\right)}.\dfrac{\left(3-x\right)\left(x+3\right)}{12x\left(1-x\right)}\)

\(P=\dfrac{\left(x+1\right)\left(x+3\right)}{12x^2\left(1-x\right)}\)

21 tháng 1 2021

undefined

21 tháng 1 2021

Bổ sung phần c và d luôn:

c, C = \(\dfrac{2}{5}\)

\(\Leftrightarrow\) \(\dfrac{x^2-1}{2x^2+3}\) = \(\dfrac{2}{5}\)

\(\Leftrightarrow\) 5(x2 - 1) = 2(2x2 + 3)

\(\Leftrightarrow\) 5x2 - 5 = 4x2 + 6

\(\Leftrightarrow\) x2 = 11

\(\Leftrightarrow\) x2 - 11 = 0

\(\Leftrightarrow\) (x - \(\sqrt{11}\))(x + \(\sqrt{11}\)) = 0

\(\Leftrightarrow\) \(\left[{}\begin{matrix}x-\sqrt{11}=0\\x+\sqrt{11}=0\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=\sqrt{11}\left(TM\right)\\x=-\sqrt{11}\left(TM\right)\end{matrix}\right.\)

d, Ta có: \(\dfrac{x^2-1}{2x^2+3}\) = \(\dfrac{x^2+\dfrac{3}{2}-\dfrac{5}{2}}{2\left(x^2+\dfrac{3}{2}\right)}\) = \(\dfrac{1}{2}\) - \(\dfrac{5}{4\left(x^2+\dfrac{3}{2}\right)}\)

C nguyên \(\Leftrightarrow\) \(\dfrac{5}{4\left(x^2+\dfrac{3}{2}\right)}\) nguyên \(\Leftrightarrow\) 5 \(⋮\) 4(x2 + \(\dfrac{3}{2}\))

\(\Leftrightarrow\) 4(x2 + \(\dfrac{3}{2}\)\(\in\) Ư(5)

Xét các TH:

4(x2 + \(\dfrac{3}{2}\)) = 5 \(\Leftrightarrow\) x2 = \(\dfrac{-1}{4}\) \(\Leftrightarrow\) x2 + \(\dfrac{1}{4}\) = 0 (Vô nghiệm)

4(x2 + \(\dfrac{3}{2}\)) = -5 \(\Leftrightarrow\) x2 = \(\dfrac{-11}{4}\) \(\Leftrightarrow\) x2 + \(\dfrac{11}{4}\) = 0 (Vô nghiệm)

4(x2 + \(\dfrac{3}{2}\)) = 1 \(\Leftrightarrow\) x2 = \(\dfrac{-5}{4}\) \(\Leftrightarrow\) x2 + \(\dfrac{5}{4}\) = 0 (Vô nghiệm)

4(x2 + \(\dfrac{3}{2}\)) = -1 \(\Leftrightarrow\) x2 = \(\dfrac{-7}{4}\) \(\Leftrightarrow\) x2 + \(\dfrac{7}{4}\) = 0 (Vô nghiệm)

Vậy không có giá trị nào của x \(\in\) Z thỏa mãn C \(\in\) Z

Chúc bn học tốt! (Ko bt đề sai hay ko nữa :v)

Bài 1: 

a: \(A=\dfrac{x^4+x^3+x+1}{x^4-x^3+2x^2-x+1}=\dfrac{x^3\left(x+1\right)+\left(x+1\right)}{x^4-x^3+x^2+x^2-x+1}\)

\(=\dfrac{\left(x+1\right)\left(x^3+1\right)}{\left(x^2-x+1\right)\left(x^2+1\right)}=\dfrac{\left(x+1\right)^2}{x^2+1}\)

Để A=0 thì x+1=0

hay x=-1

b: \(B=\dfrac{x^4-5x^2+4}{x^4-10x^2+9}=\dfrac{\left(x^2-1\right)\left(x^2-4\right)}{\left(x^2-1\right)\left(x^2-9\right)}=\dfrac{x^2-4}{x^2-9}\)

Để B=0 thi (x-2)(x+2)=0

=>x=2 hoặc x=-2

Đề sai rồi bạn

10 tháng 4 2017

a)P=x2-x+1 đkxđ:x\(\ne\)0;1

b)P=x2-x+1=(x-\(\dfrac{1}{2}\))2+\(\dfrac{3}{4}\)\(\ge\)\(\dfrac{3}{4}\) xảy ra dấu = khi x=\(\dfrac{-1}{2}\)

c)Q=\(\dfrac{2x}{P}\)=\(\dfrac{2}{x-1+\dfrac{1}{x}}\)\(\in\)Z đkxđ:x\(\ne\)0

\(\Rightarrow\)2\(⋮\)x-1+\(\dfrac{1}{x}\)\(\Rightarrow\)x-1+\(\dfrac{1}{x}\)\(\in\)U(2)={-2;-1;1;2}

giải ra x\(\in\){-\(\sqrt{\dfrac{5}{4}}\)+\(\dfrac{3}{2}\);\(\sqrt{\dfrac{5}{4}}\)+\(\dfrac{3}{2}\)}

4 tháng 1 2018

\(A=[\dfrac{2}{\left(x+1\right)^3}.\dfrac{1+x}{x}+\left(\dfrac{1}{\left(x+1\right)^2}.\dfrac{1+x^2}{x^2}\right)].\dfrac{x^3}{x-1}=\left(\dfrac{2+2x}{x\left(x+1\right)^3}+\dfrac{1+x^2}{x^2}\right).\dfrac{x^3}{x-1}=\dfrac{2x+2x^2+\left(1+x^2\right)\left(x+1\right)}{x^2\left(x+1\right)^3}.\dfrac{x^3}{x-1}=\dfrac{2x\left(1+x\right)+\left(1+x^2\right)\left(x+1\right)}{x^2\left(x+1\right)^3}.\dfrac{x^3}{x-1}=\dfrac{\left(x+1\right)\left(2x+1+x^2\right)}{x^2\left(x+1\right)^3}.\dfrac{x^3}{x-1}=\dfrac{\left(x+1\right)^3}{x^2\left(x+1\right)^3}.\dfrac{x^3}{x-1}=\dfrac{x\left(x+1\right)}{x-1}=\dfrac{x^2+x}{x-1}\)

4 tháng 1 2018

ý a có bn lm rồi, mk lm ý b,c thôi nhé

b/ A < 1 \(\Leftrightarrow\dfrac{x^2+x}{x-1}< 1\)

\(\Leftrightarrow x^2+x< x-1\)

\(\Leftrightarrow x^2+x-x+1< 0\)

\(\Leftrightarrow x^2+1< 0\)

\(\Leftrightarrow x^2< -1\) (vô lí)

Vậy k có gt nào của x t/m

c/ \(\dfrac{x^2+x}{x-1}=\dfrac{x^2+x-2+2}{x-1}=\dfrac{\left(x+2\right)\left(x-1\right)+2}{x-1}\)

\(=\dfrac{\left(x+2\right)\left(x-1\right)}{x-1}+\dfrac{2}{x-1}=x+2+\dfrac{2}{x-1}\)

Để A \(\in\) Z <=> \(\dfrac{2}{x-1}\in Z\Leftrightarrow x-1\inƯ\left(2\right)\)

\(\Leftrightarrow x-1=\left\{\pm1;\pm2\right\}\)

\(\Leftrightarrow x=\left\{-1;0;2;3\right\}\)

Vậy....

10 tháng 1 2021

a) đặt mẫu chứng là x-2

26 tháng 11 2022

a: ĐKXĐ: \(x\in\left\{-5;3;-3\right\}\)

\(A=\dfrac{-3\left(x+5\right)}{\left(x+5\right)^2}:\dfrac{x^2-3x+2x^2+6x-3x^2-9}{\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{-3}{x+5}\cdot\dfrac{\left(x-3\right)\left(x+3\right)}{-3\left(x+3\right)}\)

\(=\dfrac{x-3}{x+5}\)

b: Để A<1 thì A-1<0

=>\(\dfrac{x-3-x-5}{x+5}< 0\)

=>x+5>0

=>x>-5

c: Để A=(2x-3)/(x+1) thì \(\dfrac{2x-3}{x+1}=\dfrac{x-3}{x+5}\)

=>2x^2+10x-3x-15=x^2-2x-3

=>2x^2+7x-15-x^2+2x+3=0

=>x^2+9x-12=0

hay \(x=\dfrac{-9\pm\sqrt{129}}{2}\)