Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Ta có : \(\frac{x}{x}=\frac{4y}{7}\) => \(1=\frac{4y}{7}\)=> \(2x=\frac{4y}{7}\)=> 14x = 4y => 7x = 2y => \(\frac{x}{2}=\frac{y}{7}\)=> \(\frac{2x}{4}=\frac{y}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{4}=\frac{y}{7}=\frac{2x-y}{4-7}=\frac{3}{-3}=-1\)
=> \(\hept{\begin{cases}\frac{2x}{4}=-1\\\frac{y}{7}=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}2x=-4\\y=-7\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2\\y=-7\end{cases}}\)
b, \(\frac{x}{4}=\frac{y}{3}\)=> \(\frac{x^2}{16}=\frac{y^2}{9}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{x^2}{16}=\frac{y^2}{9}=\frac{x^2-y^2}{16-9}=\frac{36}{7}\)
=> Từ đó suy ra x,y không thỏa mãn điều kiện
a. \(\frac{x}{x}=\frac{4y}{7}\)=> 4y = 7 => y = \(\frac{7}{4}\)
2x - y = 3 => 2x = \(\frac{19}{4}\) => x = \(\frac{19}{8}\)
b. Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{4}=\frac{y}{3}=\frac{x^2-y^2}{4^2-3^2}=\frac{36}{7}\)
=> x,y \(\in\varnothing\)
a) \(A=2x^2+3x+1=\left(2x^2+2x\right)+\left(x+1\right)\)
\(=2x\left(x+1\right)+\left(x+1\right)=\left(x+1\right)\left(2x+1\right)\)
Ta có: \(\left|x\right|=\frac{1}{2}\)\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{2}\\x=\frac{1}{2}\end{cases}}\)
TH1: Nếu \(x=\frac{-1}{2}\)\(\Rightarrow A=\left(\frac{-1}{2}+1\right)\left(2.\frac{-1}{2}+1\right)=\left(\frac{-1}{2}+1\right)\left(-1+1\right)=0\)
TH2: Nếu \(x=\frac{1}{2}\)\(\Rightarrow A=\left(\frac{1}{2}+1\right)\left(2.\frac{1}{2}+1\right)=\frac{3}{2}.\left(1+1\right)=\frac{3}{2}.2=3\)
Vậy \(A=0\)hoặc \(A=3\)
b) Thay \(x=-1\)và \(y=2\)vào biểu thức ta được:
\(B=\left(-1\right)^2.2-3.\left(-1\right).2^2+\left(-1\right)^2.2^2=2+12+4=18\)
1. G= 3x2y - 2xy2 + x3y3 + 3xy2 - 2x2y - 2x3y3
G = x2y + xy2 - x3y3 = xy (x + y -x2y2) . Khi x= -2 . y=4 ta có G= -2*4( -2 + 4 - (-2)2 * 42 ) = 496
a. B+A =( -2x2 + xy +2y2 -5x +2y - 3) + ( x2 -3xy -y2 +2x -3y +1)= -x2 - 2xy + y2 -3x -y -2
A-B= -( -2x2 +xy + 2y2 -5x +2y -3) + ( x2 -3xy -y2 + 2x -3y +1) = 3x2 -4xy -3y2 +7x -5y +4
Tại x = -1, y =2
A= (-1)2 -3*(-1)*2 -22 +2*(-1) -3*2 +1 = -4
B= -2*(-1)2 + (-1)*2 + 2*22 -5*(-1) + 2*2 -3 = 10
a) 3x2y3+x2y3=4x2y3
b)5x2y-1/2x2y=10/2x2y-1/2x2y=9/2x2y
c) \(\frac{3}{4}xyz^2+\frac{1}{2}xyz^2-\frac{1}{4}xyz^2\)
\(=\frac{3}{4}xyz^2+\frac{2}{4}xyz^2-\frac{1}{4}xyz^2\)
\(=\frac{5}{4}xyz^2-\frac{1}{4}xyz^2\)
\(=\frac{4}{4}xyz^2=xyz^2\)
\(a,3x^2y^3+x^2y^3=4x^2y^3\)
\(b,5x^2y-\frac{1}{2}x^2y=\frac{9}{2}x^2y\)
\(c,\frac{3}{4}xyz^2+\frac{1}{2}xyz^2-\frac{1}{4}xyz^2=\left(\frac{3}{4}xyz^2-\frac{1}{4}xyz^2\right)+\frac{1}{2}xyz^2=\frac{2}{4}xyz^2+\frac{1}{2}xyz^2=xyz^2\)
\(x^3-3x^2+3x-1=\left(x-1\right)^3\)
\(a,x=-2\Leftrightarrow A=\left(x-1\right)^3=\left(-2-1\right)^3=-3^3=-27\)
\(b,x=\frac{1}{2}\Rightarrow A=\left(x-1\right)^3=\left(\frac{1}{2}-1\right)^3=\left(-\frac{1}{2}\right)^3=-\frac{1^3}{2^3}=-\frac{1}{8}\)