Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Answer :
\(\Rightarrow A+1=1+1+2+2^2+...+2^{2021}\)
\(\Rightarrow A+1=2+2+2^2+...+2^{2021}\)
\(\Rightarrow A+1=2^2+2^2+2^3+...+2^{2021}\)
\(\Rightarrow A+1=2^3+2^3+2^4+...+2^{2021}\)
....
\(\Rightarrow A+1=2^{2021}+2^{2021}=2^{2022}\)
Mà \(2^x=A+1\Rightarrow2^x=2^{2022}\Rightarrow x=2022\)
1. Ta có:
3A = 3^2 + 3^3+3^4+...+3^101
=> 3A-A= (3^2+3^3+3^4+...+3^101) - (3+3^2+3^3+...+3^100)
<=> 2A= 3^101-3
=> 2A +3 = 3^101
Mà 2A+3=3^n
=> 3^101 = 3^n => n=101
2. M=3+32+33+34+...+3100
=>3M=32+33+34+35+...+3101
=>3M-M= 3101-3 ( chỗ này bạn tự làm được nhé)
=> M=\(\frac{3^{101}-3}{2}\)
a) Ta co : 3101=(34)25 .3=8125.3
Bạn học đồng dư thức rồi thì xem:
Vì 81 đồng dư với 1 (mod 8) => 8125 đồng dư với 1 (mod 8)=> 8125.3 đồng dư với 1.3=3(mod 8)
=> 8125.3-3 đồng dư với 3-3=0 (mod 8)=> 8125.3-3 chia hết cho 8
=>\(\frac{81^{25}.3-3}{2}\)chia hết cho 4=> M chia hết cho 4 (1)
Ma M=3101-3 chia hết cho 3 (2)
Từ (1) và (2) => M chia hết cho 12
b)\(2\left(\frac{3^{101}-3}{2}\right)+3=3^n\)
=> 3101-3 +3 =3n
=> 3101=3n=> n = 101
Ta có: A = 1 + 2 + 22 + 23 + ..... + 229 + 230
=> 2A = 2.(1 + 2 + 22 + 23 + ..... + 229 + 230)
=> 2A = 2 + 22 + 23 + ..... + 229 + 231
=> 2A - A = 231 - 1
=> A = 231 - 1
=> A + 1 = 231
=> 2n + 4 = 231
=> n + 4 = 31
=> n = 31 - 4
=> n = 27
A = 1 + 3 + 32 + 33+..........+349+350
3A = 3 + 32 + 33 + 34 + ... + 350 + 351
3A - A = ( 3 + 32 + 33 + 34 + ... + 350 + 351 ) - ( 1 + 3 + 32 + 33+..........+349+350 )
2A = 351 - 1
A = ( 351 - 1 ) : 2
a) 2x+2x+1+2x+2+2x+3=480
<=> \(2^x+2^x.2+2^x.2^2+2^x.2^3=480\)
<=> \(2^x.\left(1+2+2^2+2^3\right)=480\)
<=>\(2^x=\frac{480}{1+2+2^2+2^3}=32\)
=> x=5
b) (x2-49)*(x2-81)<0 Khi \(\hept{\begin{cases}x^2-49< 0\\x^2-81>0\end{cases}}\) hoặc \(\hept{\begin{cases}x^2-49>0\\x^2-81< 0\end{cases}}\)
TH1 \(\hept{\begin{cases}x^2-49< 0\\x^2-81>0\end{cases}}\)\(\Rightarrow81< x^2< 49\)(Vô lí)
TH2\(\hept{\begin{cases}x^2-49>0\\x^2-81< 0\end{cases}}\) \(\Rightarrow49< x^2< 81\)\(\Leftrightarrow7^2< x^2< 9^2\)Mà x nguyên \(\Rightarrow x=8\)
c) Làm giống câu a
Sửa: \(A=1+2^1+2^2+2^3+...+2^{2021}\)
\(\Rightarrow A+1=1+1+2+2^2+...+2^{2021}\\ \Rightarrow A+1=2+2+2^2+...+2^{2021}\\ \Rightarrow A+1=2^2+2^2+2^3+...+2^{2021}\\ \Rightarrow A+1=2^3+2^3+2^4+...+2^{2021}\\ ....\\ \Rightarrow A+1=2^{2021}+2^{2021}=2^{2022}\)
Mà \(2^x=A+1\Rightarrow2^x=2^{2022}\Rightarrow x=2022\)
\(A=1+2^1+2^1+2^2+...+2^{2021}\\ \Rightarrow A=1+2+2+2^2+...+2^{2021}\\ \Rightarrow A=1+2.2+2^2+...+2^{2021}\\ \Rightarrow A=1+2^2+2^2+...+2^{2021}\\ \Rightarrow A=1+2.2^2+...+2^{2021}\\ \Rightarrow A=1+2^3+...+2^{2021}\)
....
\(\Rightarrow A=1+2^{2022}\)
\(2^x=1+A\\ \Rightarrow2^x=1+1+2^{2022}\\ \Rightarrow2^x=2+2^{2022}\)
không phù hợp với lớp 6