Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Ta có:
3A = 3^2 + 3^3+3^4+...+3^101
=> 3A-A= (3^2+3^3+3^4+...+3^101) - (3+3^2+3^3+...+3^100)
<=> 2A= 3^101-3
=> 2A +3 = 3^101
Mà 2A+3=3^n
=> 3^101 = 3^n => n=101
2. M=3+32+33+34+...+3100
=>3M=32+33+34+35+...+3101
=>3M-M= 3101-3 ( chỗ này bạn tự làm được nhé)
=> M=\(\frac{3^{101}-3}{2}\)
a) Ta co : 3101=(34)25 .3=8125.3
Bạn học đồng dư thức rồi thì xem:
Vì 81 đồng dư với 1 (mod 8) => 8125 đồng dư với 1 (mod 8)=> 8125.3 đồng dư với 1.3=3(mod 8)
=> 8125.3-3 đồng dư với 3-3=0 (mod 8)=> 8125.3-3 chia hết cho 8
=>\(\frac{81^{25}.3-3}{2}\)chia hết cho 4=> M chia hết cho 4 (1)
Ma M=3101-3 chia hết cho 3 (2)
Từ (1) và (2) => M chia hết cho 12
b)\(2\left(\frac{3^{101}-3}{2}\right)+3=3^n\)
=> 3101-3 +3 =3n
=> 3101=3n=> n = 101
\(a,3^n=3^4\)
\(\Rightarrow n=4\)
\(b,2008^n=2008^0\)
\(\Rightarrow n=0\)
A)\(M=1+3+3^2+...+3^9\)\(\Rightarrow3M=3+3^2+3^3+...+3^{10}\)\(\Rightarrow3M-M=\left(3+3^2+3^3+...+3^{10}\right)-\left(1+3+3^2+...+3^9\right)\)
\(\Rightarrow2M=3^{10}-1\)\(\Rightarrow2M+1=3^{10}\)\(\Rightarrow n=10\)
B) \(A=1+4^2+...+4^{99}\)\(\Rightarrow4A=4+4^3+4^4+...+4^{100}\)\(\Rightarrow4A-A=\left(4+4^3+4^4+...+4^{100}\right)-\left(1+4^2+...+4^{99}\right)\)
\(\Rightarrow3A=4^{100}+4-4^2-1\Rightarrow3A=4^{100}-13\Rightarrow3A+13=4^{100}\Rightarrow n=100\)
A = 1 + 5 + 52 + 53 + ....+ 52017
A . 5 = 5 + 52 + 53 + 54 + .... + 52018
A . 5 - A = ( 5 + 52 + 53 + 54 + .... + 52018 ) - ( 1 + 5 + 52 + 53 + ......+ 52017 )
A . 4 = 52018 - 1
Ta có : 52018 - 1 + 1 = 5n + 1
52018 = 5n+1
Suy ra : 2018 = n + 1
2018 - 1 = n
2017 = n
chuẩn mình cũng làm thế
đó là đề thi khảo sát giữa học kì 1
Bài 6:
ta có : \(\hept{\begin{cases}2^4=4^2,99^0=1^n\\4^3\text{ lớn nhất}\\0^{99}\text{ nhỏ nhất}\end{cases}}\)
Bài 7:
Tính giá trị của các biểu thức:
a) 56 : 53 + 33.32\(=5^3+3^5=125+243=368\)
b) 4.52 - 2.32\(=4\times25-2\times9=82\)
Bài 8:
a) 13 + 23 \(=9\)
b) 13 + 23 + 33=36
c) 13 + 23 + 33 + 43=100
d) 13 + 23 + 33 + 43 + 53=225
Bài 6 :
Ta có : 24 = 16, 34 = 81, 42 = 16, 43 = 64, 990 = 1, 099 = 0, 1n = 1
Vì: + 16 = 16 => 24 = 42
+ 1 = 1 => 990 = 1n
Vì 81 lớn nhất trong tất cả những số trên nên 34 lớn nhất
Vì 0 bé nhất trong tất cả những số trên nên 099 bé nhất
Bài 7 :
a, 56 : 55 + 33.32
= 51 + 35
= 5 + 243
= 248
b, 4.52 - 2.32
= 4.25 - 2.9
= 100 - 18
= 82
Bài 8 :
a, 13 + 23
= 1 + 8
= 9
b, 13 + 23 + 33
= 1 + 8 + 27
= 36
c, 13 + 23 + 33 + 43
= 1 + 8 + 27 + 64
= 100
d, 13 + 23 + 33 + 43 + 53
= 1 + 8 + 27 + 64 + 125
= 225
Ta có: A = 1 + 2 + 22 + 23 + ..... + 229 + 230
=> 2A = 2.(1 + 2 + 22 + 23 + ..... + 229 + 230)
=> 2A = 2 + 22 + 23 + ..... + 229 + 231
=> 2A - A = 231 - 1
=> A = 231 - 1
=> A + 1 = 231
=> 2n + 4 = 231
=> n + 4 = 31
=> n = 31 - 4
=> n = 27
A = 1 + 3 + 32 + 33+..........+349+350
3A = 3 + 32 + 33 + 34 + ... + 350 + 351
3A - A = ( 3 + 32 + 33 + 34 + ... + 350 + 351 ) - ( 1 + 3 + 32 + 33+..........+349+350 )
2A = 351 - 1
A = ( 351 - 1 ) : 2