Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ a/(a + b) > a/(a + b + c)
b/(b + c) > b/ (a + b + c)
c/ (a + c) > c / (a + b + c)
=> a/(a+b)+b/(b+c)+c/(c+a) > (a + b + c) / (a + b + c) = 1
+ ta có
a/(a + b) < (a + c)/ (a + b + c) '
thật vậy nhân lên ta có
a^2 + ab + ac < a^2 + ab + ac + bc
<> 0 < bc đúng
- tương tự b/(b + c) < (b + a) / (a + b + c) '' và c/ (a + c) < (c + b) / (a + b + c) '''
cộng ','',''' => đpcm
tìm so nguyên tố p và các số dương x y sao cho
p-1=2x(x+2)
p^2-1=2y(y+2)
Nhận xét : \(\frac{a}{b+c}>\frac{a}{a+b+c}\)
\(\frac{b}{a+c}>\frac{b}{a+b+c}\)
\(\frac{c}{a+b}>\frac{c}{a+b+c}\)
Cộng từng vế => \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)(1)
+) Lại có: a;b; c là 3 cạnh của tam giác nên a < b+ c; b < a+ c; c< a+ b
=> \(\frac{a}{b+c}<1;\frac{b}{c+a}<1;\frac{c}{b+a}<1\)
\(\frac{a}{b+c}<1\Rightarrow\frac{a}{b+c}<\frac{a+a}{b+c+a}=\frac{2a}{a+b+c}\)
tương tự, \(\frac{b}{c+a}<\frac{2b}{a+b+c};\frac{c}{a+b}<\frac{2c}{a+b+c}\)
=> \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}<\frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\) (2)
Từ (1)(2) => đpcm
Xem câu hỏi bạn tham khảo link này nhé