K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2016

+ a/(a + b) > a/(a + b + c) 
b/(b + c) > b/ (a + b + c) 
c/ (a + c) > c / (a + b + c) 
=> a/(a+b)+b/(b+c)+c/(c+a) > (a + b + c) / (a + b + c) = 1 
+ ta có 
a/(a + b) < (a + c)/ (a + b + c) ' 
thật vậy nhân lên ta có 
a^2 + ab + ac < a^2 + ab + ac + bc 
<> 0 < bc đúng 
- tương tự b/(b + c) < (b + a) / (a + b + c) '' và c/ (a + c) < (c + b) / (a + b + c) ''' 
cộng ','',''' => đpcm

18 tháng 4 2016

tìm so nguyên tố p và các số dương x y sao cho 

p-1=2x(x+2)

p^2-1=2y(y+2)

7 tháng 5 2015

Nhận xét : \(\frac{a}{b+c}>\frac{a}{a+b+c}\)

               \(\frac{b}{a+c}>\frac{b}{a+b+c}\)

                \(\frac{c}{a+b}>\frac{c}{a+b+c}\)

Cộng từng vế => \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)(1)

+) Lại có: a;b; c là 3 cạnh của tam giác nên a < b+ c; b < a+ c; c< a+ b

=> \(\frac{a}{b+c}<1;\frac{b}{c+a}<1;\frac{c}{b+a}<1\)

\(\frac{a}{b+c}<1\Rightarrow\frac{a}{b+c}<\frac{a+a}{b+c+a}=\frac{2a}{a+b+c}\)

tương tự, \(\frac{b}{c+a}<\frac{2b}{a+b+c};\frac{c}{a+b}<\frac{2c}{a+b+c}\)

=> \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}<\frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\) (2)

Từ (1)(2) => đpcm

8 tháng 5 2022

Cho a b c là độ dài dài ba cạnh của một tam giác chứng mình rằng a/b+c+b/c+a+c/a+b

lấy bút xóa mà xóa hết là khỏe

24 tháng 1 2016

\(botay.com.vn\)