Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow \frac{ab+bc+ac}{abc}=0\)
\(\Leftrightarrow ab+bc+ac=0\)
\(\Rightarrow ab+bc=-ac\). Khi đó:
\(P=\frac{ab}{c^2}+\frac{bc}{a^2}+\frac{ca}{b^2}=\frac{(ab)^3+(bc)^3+(ca)^3}{a^2b^2c^2}\)
\(=\frac{(ab+bc)^3-3(ab)^2bc-3ab(bc)^2+(ca)^3}{a^2b^2c^2}\)
\(=\frac{(-ac)^3-3ab^2c(ab+bc)+(ca)^3}{a^2b^2c^2}\)
\(=\frac{-3ab^2c(ab+bc)}{a^2b^2c^2}=\frac{-3ab^2c.(-ac)}{a^2b^2c^2}=3\)
Ta có \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}=-\dfrac{1}{c}\Leftrightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}\right)^3=\left(-\dfrac{1}{c}\right)^3\Leftrightarrow\dfrac{1}{a^3}+\dfrac{1}{b^3}+3.\dfrac{1}{ab}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)=-\dfrac{1}{c^3}\Leftrightarrow\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}+3.\dfrac{1}{ab}.\left(-\dfrac{1}{c}\right)=0\Leftrightarrow\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}-\dfrac{3}{abc}=0\Leftrightarrow\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=\dfrac{3}{abc}\Leftrightarrow abc.\left(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}\right)=\dfrac{3abc}{abc}\Leftrightarrow\dfrac{bc}{a^2}+\dfrac{ac}{b^2}+\dfrac{ab}{c^2}=3\Leftrightarrow P=3\)Vậy khi \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\) thì P=3
\(VT=\dfrac{a^3}{a^2+abc}+\dfrac{b^3}{b^2+abc}+\dfrac{c^3}{c^2+abc}\)
Xét \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\Leftrightarrow ab+bc+ac=abc\)
\(\Rightarrow VT=\dfrac{a^3}{a^2+ab+bc+ac}+\dfrac{b^3}{b^2+ab+bc+ac}+\dfrac{c^3}{c^2+ab+bc+ac}\)
\(\Leftrightarrow VT=\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}+\dfrac{b^3}{\left(b+a\right)\left(b+c\right)}+\dfrac{c^3}{\left(c+b\right)\left(c+a\right)}\)
Áp dụng bđt Cauchy ta có :
\(\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}+\dfrac{a+b}{8}+\dfrac{a+c}{8}\ge3\sqrt[3]{\dfrac{a^3}{64}}=\dfrac{3a}{4}\)
Thiết lập tương tự và thu lại ta có :
\(VT+\dfrac{a+b+c}{2}\ge\dfrac{3}{4}\left(a+b+c\right)\)
\(\Rightarrow VT\ge\dfrac{3}{4}\left(a+b+c\right)-\dfrac{1}{2}\left(a+b+c\right)=\dfrac{a+b+c}{4}\left(đpcm\right)\)
Dấu '' = '' xảy ra khi \(a=b=c=3\)
Theo C.B.S thì
\(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\ge\dfrac{9}{ab+bc+ac}\)
\(\Rightarrow\dfrac{1}{a^2+b^2+c^2}+\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\ge\dfrac{1}{a^2+b^2+c^2}+\dfrac{9}{ab+bc+ac}=\dfrac{1}{a^2+b^2+c^2}+\dfrac{1}{ab+bc+ac}+\dfrac{1}{ab+bc+ac}+\dfrac{7}{ab+bc+ac}\)
Lại theo CBS thì
\(\dfrac{1}{a^2+b^2+c^2}+\dfrac{1}{ab+bc+ac}+\dfrac{1}{ab+bc+ac}\ge\dfrac{9}{\left(a+b+c\right)^2}=9\)mà \(ab+bc+ac\le\dfrac{\left(a+b+c\right)^2}{3}=\dfrac{1}{3}\)
\(\Rightarrow\dfrac{7}{ab+bc+ac}\ge21\)
\(\Rightarrow\)\(\dfrac{1}{a^2+b^2+c^2}+\dfrac{1}{ab+bc+ac}+\dfrac{1}{ab+bc+ac}+\dfrac{7}{ab+bc+ac}\)\(\)\(\ge21+9=30\)
vậy Min = 30 khi a = b = c = 1/3
Bạn xem lời giải tại đây:
https://hoc24.vn/cau-hoi/cho-abcge0a2b2c21cmr-dfracc1abdfracb1acdfraca1bcge1.1019784090594
Đặt x = \(\dfrac{1}{a}\); y = \(\dfrac{1}{b}\); z = \(\dfrac{1}{c}\); x + y + z = 0 (vì \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\))
x = -(y + z)
x3 + y3 + z3 - 3xyz = - (y + z)3 + y3 + z3 - 3xyz
-(y3 + 3y2z + 3y2z2 + z3) + y3 + z3 - 3xyz = -3yz(y + z + x) = -3yz . 0 = 0
Từ x3 + y3 +z3 - 3xyz = 0 \(\Leftrightarrow\) x3 + y3 +z3 = 3xyz
Do đó P = \(\dfrac{ab}{c^2}+\dfrac{bc}{a^2}+\dfrac{ac}{b^2}=abc\left(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}\right)=abc.\dfrac{3}{abc}=3\)
Nếu \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\) thì \(\)P = \(\dfrac{ab}{c^2}+\dfrac{bc}{a^2}+\dfrac{ac}{b^2}=3\)