Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VT=\dfrac{a^3}{a^2+abc}+\dfrac{b^3}{b^2+abc}+\dfrac{c^3}{c^2+abc}\)
Xét \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\Leftrightarrow ab+bc+ac=abc\)
\(\Rightarrow VT=\dfrac{a^3}{a^2+ab+bc+ac}+\dfrac{b^3}{b^2+ab+bc+ac}+\dfrac{c^3}{c^2+ab+bc+ac}\)
\(\Leftrightarrow VT=\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}+\dfrac{b^3}{\left(b+a\right)\left(b+c\right)}+\dfrac{c^3}{\left(c+b\right)\left(c+a\right)}\)
Áp dụng bđt Cauchy ta có :
\(\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}+\dfrac{a+b}{8}+\dfrac{a+c}{8}\ge3\sqrt[3]{\dfrac{a^3}{64}}=\dfrac{3a}{4}\)
Thiết lập tương tự và thu lại ta có :
\(VT+\dfrac{a+b+c}{2}\ge\dfrac{3}{4}\left(a+b+c\right)\)
\(\Rightarrow VT\ge\dfrac{3}{4}\left(a+b+c\right)-\dfrac{1}{2}\left(a+b+c\right)=\dfrac{a+b+c}{4}\left(đpcm\right)\)
Dấu '' = '' xảy ra khi \(a=b=c=3\)
Ta có \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}=-\dfrac{1}{c}\Leftrightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}\right)^3=\left(-\dfrac{1}{c}\right)^3\Leftrightarrow\dfrac{1}{a^3}+\dfrac{1}{b^3}+3.\dfrac{1}{ab}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)=-\dfrac{1}{c^3}\Leftrightarrow\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}+3.\dfrac{1}{ab}.\left(-\dfrac{1}{c}\right)=0\Leftrightarrow\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}-\dfrac{3}{abc}=0\Leftrightarrow\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=\dfrac{3}{abc}\Leftrightarrow abc.\left(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}\right)=\dfrac{3abc}{abc}\Leftrightarrow\dfrac{bc}{a^2}+\dfrac{ac}{b^2}+\dfrac{ab}{c^2}=3\Leftrightarrow P=3\)Vậy khi \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\) thì P=3
Áp dụng bất đẳng thức Cauchy-Schwarz:
\(VT=\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}+\dfrac{1}{a^2+b^2+c^2}\ge\dfrac{\left(1+1+1\right)^2}{ab+bc+ac}+\dfrac{1}{a^2+b^2+c^2}\)
\(=\dfrac{9}{ab+bc+ac}+\dfrac{1}{a^2+b^2+c^2}\)
\(=\dfrac{1}{ab+bc+ac}+\dfrac{1}{ab+bc+ac}+\dfrac{7}{ab+bc+ac}+\dfrac{1}{a^2+b^2+c^2}\)
\(\ge\dfrac{\left(1+1+1\right)^2}{ab+bc+ac+ab+bc+ac+a^2+b^2+c^2}+\dfrac{7}{ab+bc+ac}\)
\(=\dfrac{9}{\left(a+b+c\right)^2}+\dfrac{7}{ab+bc+ac}\)
Áp dụng bất đẳng thức AM-GM cho 2 số dương:
\(ab+bc+ac\le\dfrac{\left(a+b+c\right)^2}{3}=\dfrac{1^2}{3}=\dfrac{1}{3}\)
Ta có: \(\dfrac{9}{\left(a+b+c\right)^2}+\dfrac{7}{ab+bc+ac}\ge\dfrac{9}{\left(a+b+c\right)^2}+\dfrac{7}{\dfrac{1}{3}}=9+21=30\)
Áp dụng BĐT Cauchy-Schwarz ta có
BT\(\ge\)\(\frac{\left(1+1+1\right)^2}{ab+bc+ac}+\frac{1}{a^2+b^2+c^2}=\frac{9}{ab+bc+ac}+\frac{1}{a^2+b^2+c^2}\)
\(=\frac{1}{ab+bc+ac}+\frac{1}{ab+bc+ac}+\frac{1}{a^2+b^2+c^2}+\frac{7}{ab+bc+ac}\)
\(\ge\frac{\left(1+1+1\right)^2}{a^2+b^2+c^2+2ab+2bc+2ac}+\frac{7}{ab+bc+ac}\)\(=1+\frac{7}{ab+bc+ac}\)
Ta lại có ab+bc+ac =< (a+b+c)^2/3 =3
\(\Rightarrow BT\ge1+\frac{7}{3}=\frac{10}{3}\)
Vậy GTNN là \(\frac{10}{3}\)khi a=b=c=1
Lời giải:
Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow \frac{ab+bc+ac}{abc}=0\)
\(\Leftrightarrow ab+bc+ac=0\)
\(\Rightarrow ab+bc=-ac\). Khi đó:
\(P=\frac{ab}{c^2}+\frac{bc}{a^2}+\frac{ca}{b^2}=\frac{(ab)^3+(bc)^3+(ca)^3}{a^2b^2c^2}\)
\(=\frac{(ab+bc)^3-3(ab)^2bc-3ab(bc)^2+(ca)^3}{a^2b^2c^2}\)
\(=\frac{(-ac)^3-3ab^2c(ab+bc)+(ca)^3}{a^2b^2c^2}\)
\(=\frac{-3ab^2c(ab+bc)}{a^2b^2c^2}=\frac{-3ab^2c.(-ac)}{a^2b^2c^2}=3\)
Đề sai rồi: a,b,c > 0 thì làm sao mà có: ab + bc + ca = 0 được.
Bài 2:
\(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{c}{a+b}}>2\)
Trước hết ta chứng minh \(\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\)
Áp dụng BĐT AM-GM ta có:
\(\sqrt{a\left(b+c\right)}\le\dfrac{a+b+c}{2}\)\(\Rightarrow1\ge\dfrac{2\sqrt{a\left(b+c\right)}}{a+b+c}\)
\(\Rightarrow\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\). Ta lại có:
\(\sqrt{\dfrac{a}{b+c}}=\dfrac{\sqrt{a}}{\sqrt{b+c}}=\dfrac{a}{\sqrt{a\left(b+c\right)}}\ge\dfrac{2a}{a+b+c}\)
Thiết lập các BĐT tương tự:
\(\sqrt{\dfrac{b}{c+a}}\ge\dfrac{2b}{a+b+c};\sqrt{\dfrac{c}{a+b}}\ge\dfrac{2c}{a+b+c}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\ge\dfrac{2a}{a+b+c}+\dfrac{2b}{a+b+c}+\dfrac{2c}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}\ge2\)
Dấu "=" không xảy ra nên ta có ĐPCM
Lưu ý: lần sau đăng từng bài 1 thôi nhé !
1) Áp dụng liên tiếp bđt \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) với a;b là 2 số dương ta có:
\(\dfrac{1}{2a+b+c}=\dfrac{1}{\left(a+b\right)+\left(a+c\right)}\le\dfrac{\dfrac{1}{a+b}+\dfrac{1}{a+c}}{4}\)\(\le\dfrac{\dfrac{2}{a}+\dfrac{1}{b}+\dfrac{1}{c}}{16}\)
TT: \(\dfrac{1}{a+2b+c}\le\dfrac{\dfrac{2}{b}+\dfrac{1}{a}+\dfrac{1}{c}}{16}\)
\(\dfrac{1}{a+b+2c}\le\dfrac{\dfrac{2}{c}+\dfrac{1}{a}+\dfrac{1}{b}}{16}\)
Cộng vế với vế ta được:
\(\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le\dfrac{1}{16}.\left(\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}\right)=1\left(đpcm\right)\)
Theo C.B.S thì
\(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\ge\dfrac{9}{ab+bc+ac}\)
\(\Rightarrow\dfrac{1}{a^2+b^2+c^2}+\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\ge\dfrac{1}{a^2+b^2+c^2}+\dfrac{9}{ab+bc+ac}=\dfrac{1}{a^2+b^2+c^2}+\dfrac{1}{ab+bc+ac}+\dfrac{1}{ab+bc+ac}+\dfrac{7}{ab+bc+ac}\)
Lại theo CBS thì
\(\dfrac{1}{a^2+b^2+c^2}+\dfrac{1}{ab+bc+ac}+\dfrac{1}{ab+bc+ac}\ge\dfrac{9}{\left(a+b+c\right)^2}=9\)mà \(ab+bc+ac\le\dfrac{\left(a+b+c\right)^2}{3}=\dfrac{1}{3}\)
\(\Rightarrow\dfrac{7}{ab+bc+ac}\ge21\)
\(\Rightarrow\)\(\dfrac{1}{a^2+b^2+c^2}+\dfrac{1}{ab+bc+ac}+\dfrac{1}{ab+bc+ac}+\dfrac{7}{ab+bc+ac}\)\(\)\(\ge21+9=30\)
vậy Min = 30 khi a = b = c = 1/3