Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(A=2+2^2+2^3+...+2^{90}\)
=> \(A=(2+2^2)+(2^3+2^4)+...+(2^{89}+2^{90})\)
=> \(A=2(1+2)+2^3(1+2)+...+2^{89}(1+2)\)
=> \(A=2.3+2^3.3+...+2^{89}.3\)
=> \(A=(2+2^3+...+2^{89}).3\)chia hết cho 3
b, \(A=2+2^2+2^3+...+2^{90}\)
=> \(A=(2+2^2+2^3)+\left(2^4+2^5+2^6\right)+...+(2^{88}+2^{89}+2^{90})\)
=> \(A=2(1+2+2^2)+2^4.\left(1+2+2^2\right)+...+2^{88}(1+2+2^2)\)
=> \(A=2.7+2^4.7+...+2^{88}.7\)
=> \(A=(2+2^4+...+2^{88}).7\)chia hết cho 7
a, A=2+2^2+2^3+2^4+...+2^90
A=(2+2^2)+(2^3+2^4)+..+(2^89+2^90)
A=2.(1+2)+2^3(1+2)+....+2^89(1+2)
A=2.3+2^3.3+...+2^89.3
A=3.(2+2^3+...+2^89)\(⋮\)3
=> A\(⋮\)3=>ĐPCM
b, A=2+2^2+2^3+....+2^90
A=(2+2^2+2^3)+(2^4+2^5+2^6)+...+(2^88+2^89+2^100)
A=2.(1+2+2^2)+2^4.(1+2+2^2)+...+2^88.(1+2+2^2)
A=2.7+2^4.7+...+2^88.7
A=7.(2+2^4+...+2^88)\(⋮\)7
=>A\(⋮\)7=>ĐPCM
\(B=2+2^2+2^3+...+2^{92}\)
=> \(B=(2+2^2+2^3+2^4)+...+\left(2^{89}+2^{90}+2^{91}+2^{92}\right)\)
=> \(B=2(1+2+2^2+2^3)+...+2^{89}\left(1+2+2^2+2^3\right)\)
=> \(B=2.15+...+2^{89}.15\)
=> \(B=(2+...+2^{89}).15\)CHIA HẾT CHO 15
Vì 13 là lẻ \(\Rightarrow\) 13, 132, 133, 134, 135, 136 là lẻ.
Mà lẻ + lẻ + lẻ + lẻ + lẻ + lẻ = chẵn nên 13 + 132 + 133 + 134 + 135 + 136 là chẵn. \(\Rightarrow\) 13 + 132 + 133 + 134 + 135 + 136 \(⋮\) 2
\(\Rightarrow\) ĐPCM
\(C=1+3+3^2+3^3+......+3^{11}\)
\(C=\left(1+3+3^2\right)+.......+\left(3^9+3^{10}+3^{11}\right)\)
\(C=13.\left(1+3+3^2\right)+........+13.\left(1+3+3^2\right)\)
Mà 13 \(⋮\)13 => C \(⋮\)13
Tương tự với câu b
b) \(C=1+3+3^2+3^3+.......+3^{11}\)
\(C=\left(1+3+3^2+3^3\right)+......+\left(3^8+3^9+3^{10}+3^{11}\right)\)
\(C=40.\left(1+3+3^2+3^3\right)+......+40.\left(1+3+3^2+3^3\right)\)
Mà 40 \(⋮\)40 => C \(⋮\)40
* B = 3 + 32 + 33 + 34 +...+ 31991
<=> B = ( 3 + 32 + 33 ) + ( 34 + 35 +36 ) +...+ ( 31989 +31990 +31991 )
<=> B = 3( 1 + 3 + 32 ) + 34( 1 + 3 + 32 ) +...+31989( 1 + 3 + 32 )
<=> B = ( 1 + 3 + 32 )( 3 + 34 +...+ 31989 )
<=> B = 13( 3 + 34 +...+ 31989 ) chia hết cho 13
( đpcm )
* B = 3 + 32 + 33 + 34 +...+ 31991
<=> B =
\(A=\frac{2^{12}x3^4x3^{10}}{2^{12}x3^{12}}=3^2=9\)
\(A=\frac{4^6.3^4.9^5}{6^{12}}\)
\(A=\frac{\left(2^2\right)^6.3^4.\left(3^2\right)^5}{\left(2.3\right)^{12}}\)
\(A=\frac{2^{12}.3^4.3^{10}}{2^{12}.3^{12}}\)
\(A=\frac{2^{12}.3^{14}}{2^{12}.3^{12}}\)
\(A=3^2\left(2^{12}.3^{12}\ne0\right)\)
\(A=9\)
Vậy \(A=9\)
a)ta có 74n-1 = (74)n-1 = 2401n - 1 = ...1-1=...0 \(⋮\) 10 { vì 2041 có tận cùng bằng 1 nên 2041 mũ mấy cũng có tận cùng bằng 1 nên 2041n có tận cùng bằng 1}
b) ta có 92n+1+1 = (92)n . 9 + 1 = 81n .9 +1 = ..1 .9 +1=..9+1=..0 \(⋮\)10 { vì 81 có tận cùng bằng 1 nên 81 mũ mấy cũng có tận cùng bằng 1 nên 81n có tận cùng bằng 1}
cho mik mik giải nốt bài 2 cho
Bài 1 : \(A=1+3+3^2+...+3^{31}\)
a. \(A=\left(1+3+3^2\right)+...+3^9.\left(1.3.3^2\right)\)
\(\Rightarrow A=13+3^9.13\)
\(\Rightarrow A=13.\left(1+...+3^9\right)\)
\(\Rightarrow A⋮13\)
b. \(A=\left(1+3+3^2+3^3\right)+...+3^8.\left(1+3+3^2+3^3\right)\)
\(\Rightarrow A=40+...+3^8.40\)
\(\Rightarrow A=40.\left(1+...+3^8\right)\)
\(\Rightarrow A⋮40\)
Bài 2:
Ta có: \(C=3+3^2+3^4+...+3^{100}\)
\(\Rightarrow C=(3+3^2+3^3+3^4)+...+(3^{97}+3^{98}+3^{99}+3^{100})\)
\(\Rightarrow3.(1+3+3^2+3^3)+...+3^{97}.(1+3+3^2+3^3)\)
\(\Rightarrow3.40+...+3^{97}.40\)
Vì tất cả các số hạng của biểu thức C đều chia hết cho 40
\(\Rightarrow C⋮40\)
Vậy \(C⋮40\)
1. \(A=2^{2016}-1\)
\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)
\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)
16 chia 5 dư 1 nên 16^504 chia 5 dư 1
=> 16^504-1 chia hết cho 5
hay A chia hết cho 5
\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)
lý luận TT trg hợp A chia hết cho 5
(3;5;7)=1 = > A chia hết cho 105
2;3;4 TT ạ !!
\(B=3+3^2+3^3+...+3^{90}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{89}+3^{90}\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{89}\left(1+3\right)\)
\(=\left(1+3\right)\left(3+3^3+...+3^{89}\right)\)
\(=4\left(3+3^3+...+3^{89}\right)⋮4\)
\(B=3+3^2+3^3+...+3^{90}\)
\(=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...\left(3^{88}+3^{89}+3^{90}\right)\)
\(=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{98}\left(1+3+3^2\right)\)
\(=\left(1+3+3^2\right)\left(3+3^4+...+3^{98}\right)\)
\(=13\left(3+3^4+...+3^{98}\right)⋮13\)