K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2016

Áp dụng BĐT Bunhiacopxki : 

\(A^2=\left(1.a+2.b+3.c\right)^2\le\left(1^2+2^2+3^2\right)\left(a^2+b^2+c^2\right)=14\)

\(\Rightarrow A\le\sqrt{14}\)

Đẳng thức xảy ra khi \(\hept{\begin{cases}a=\frac{b}{2}=\frac{c}{3}\\a^2+b^2+1=1\end{cases}}\)

Câu 1. Chứng minh √7 là số vô tỉ.Câu 2.a) Chứng minh: (ac + bd)2 + (ad – bc)2 = (a2 + b2)(c2 + d2)b) Chứng minh bất dẳng thức Bunhiacôpxki: (ac + bd)2 ≤ (a2 + b2)(c2 + d2)Câu 3. Cho x + y = 2. Tìm giá trị nhỏ nhất của biểu thức: S = x2 + y2.Câu 4.a) Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy: b) Cho a, b, c > 0. Chứng minh rằng: c) Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.Câu...
Đọc tiếp

Câu 1. Chứng minh √7 là số vô tỉ.

Câu 2.

a) Chứng minh: (ac + bd)2 + (ad – bc)2 = (a2 + b2)(c2 + d2)

b) Chứng minh bất dẳng thức Bunhiacôpxki: (ac + bd)2 ≤ (a2 + b2)(c2 + d2)

Câu 3. Cho x + y = 2. Tìm giá trị nhỏ nhất của biểu thức: S = x2 + y2.

Câu 4.

a) Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy: 

b) Cho a, b, c > 0. Chứng minh rằng: 

c) Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.

Câu 5. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức: M = a3 + b3.

Câu 6. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức: N = a + b.

Câu 7. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)

Câu 8. Tìm liên hệ giữa các số a và b biết rằng: |a + b| > |a - b|

Câu 9.

a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4a

b) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 8

Câu 10. Chứng minh các bất đẳng thức:

a) (a + b)2 ≤ 2(a2 + b2)

b) (a + b + c)2 ≤ 3(a2 + b2 + c2)

Câu 11. Tìm các giá trị của x sao cho:

a) |2x – 3| = |1 – x|

b) x2 – 4x ≤ 5

c) 2x(2x – 1) ≤ 2x – 1.

Câu 12. Tìm các số a, b, c, d biết rằng: a2 + b2 + c2 + d2 = a(b + c + d)

Câu 13. Cho biểu thức M = a2 + ab + b2 – 3a – 3b + 2001. Với giá trị nào của a và b thì M đạt giá trị nhỏ nhất? Tìm giá trị nhỏ nhất đó.

Câu 14. Cho biểu thức P = x2 + xy + y2 – 3(x + y) + 3. Chứng minh rằng giá trị nhỏ nhất của P bằng 0.

Câu 15. Chứng minh rằng không có giá trị nào của x, y, z thỏa mãn đẳng thức sau:

x2 + 4y2 + z2 – 2a + 8y – 6z + 15 = 0

3
16 tháng 1 2016

mình có phần của mấy bài tập này

mình tải về rùi mà ko nhớ link 

có đáp án nữa

 

16 tháng 1 2016

chuyen-de-BD-HSG-Toan9.pdf

 

1 tháng 5 2018

bn sử dụng bất đẳng thức cô si đi

1 tháng 5 2018

Nguyễn Đại Nghĩa,bác nói cụ thể hơn được ko :v

4 tháng 5 2018

Ta có: 2P=(a2+b2) + (b2+c2) + (c2+a2

Theo Cauchy có: 

\(2P\ge2ab+2bc+2ca=2\left(ab+bc+ca\right)=2.9\)

=> \(P\ge9\)=> Pmin = 9 đạt được khi x=y=\(\sqrt{3}\)

Hoặc:

P2= (a2+b2+c2)(b2+c2+a2

Theo Bunhiacopxki có:

P2= (a2+b2+c2)(b2+c2+a2\(\ge\)(ab+bc+ca)2=92

=> P\(\ge\)9  => Pmin=9

5 tháng 5 2018

Vì \(a\ge1,b\ge1,c\ge1\)(gt) => \(\left(a-1\right)\left(b-1\right)\ge0\)<=> ab -a -b + 1 \(\ge0\)(1)

\(\left(b-1\right)\left(c-1\right)\ge0\)<=> bc - b - c + 1 \(\ge0\)(2)

\(\left(c-1\right)\left(a-1\right)\ge0\)<=> ca -c - a + 1 \(\ge0\)(3)

Cộng từng vế của (1), (2) và (3) ta được: 

ab + bc + ca -2(a +b +c) + 3 \(\ge0\)

=> \(a+b+c\le\frac{ab+bc+ca+3}{2}=\frac{9+3}{2}=6\)

Mà \(a\ge1,b\ge1,c\ge1\Rightarrow a+b+c\ge3\)=> \(3\le a+b+c\le6\)=> \(\left(a+b+c\right)^2\le36\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)\le36\)

=> \(a^2+b^2+c^2\le36-2\left(ab+bc+ca\right)=36-2\times9=18\)=> P \(\le18\)

Vậy GTLN của P là 18 

Dâu "=" xảy ra khivà chỉ khi:

a =b=1, c=4 

hoặc: b=c=1, a=4

hoặc: c=a=1, b=4

7 tháng 3 2020

Violympic toán 9

8 tháng 4 2020

Ta có : \(ab\le\frac{a^2+b^2}{2}\le\frac{a^2+b^2+c^2}{2}=1\).Nên ab - 1 \(\le0\)

Do đó \(P^2=\left[\left(a+b\right).1+c\left(1-ab\right)\right]^2\le\left[\left(a+b\right)^2+c^2\right]\left[1^2+\left(1-ab\right)^2\right]\)

           \(=\left(a^2+2ab+b^2+c^2\right)\left(1+1-2ab+a^2b^2\right)\)   

           \(=\left(2ab+3\right)\left(a^2b^2-2ab+2\right)\)

           \(=2a^3b^3-4a^2b^2+4ab+2a^2b^2-4ab+4\)

           \(=2a^3b^3-2a^2b^2+4\)

           \(=2a^2b^2\left(ab-1\right)+4\le4\)( vì \(a^2b^2\ge0,ab-1\le0\)

Suy ra \(-2\le P\le2\)

\(\cdot P\le2.\).Dấu " = " có thể xảy ra khi a = b = 1 , c= 0

\(\cdot P\ge-2.\)Dấu " =  " có thể xảy ra khi a =  b = -1 , c= 0 

Vậy Max P là 2 và Min P là -2

24 tháng 2 2017

Câu 2a

\(\left(ac+bd\right)^2+\left(ad-bc\right)^2=\left(a^2+b^2\right)\left(c^2+d^2\right)\)

\(\Leftrightarrow a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2=\left(a^2+b^2\right)c^2+d^2\left(a^2+b^2\right)\)

\(\Leftrightarrow a^2c^2+b^2d^2+a^2d^2+b^2c^2=a^2c^2+b^2c^2+a^2d^2+b^2d^2\)

\(\Leftrightarrow a^2c^2+b^2d^2+a^2d^2+b^2c^2-\left(a^2c^2+b^2d^2+a^2d^2+b^2c^2\right)=0\)

\(\Leftrightarrow0=0\)( đpcm )

Câu 2b

\(\left(ac+bd\right)^2\le\left(a^2+b^2\right)\left(c^2+d^2\right)\)

\(\Leftrightarrow a^2c^2+2abcd+b^2d^2\le\left(a^2+b^2\right)c^2+d^2\left(a^2+b^2\right)\)

\(\Leftrightarrow a^2c^2+2abcd+b^2d^2\le a^2c^2+b^2c^2+a^2d^2+b^2d^2\)

\(\Leftrightarrow2abcd\le b^2c^2+a^2d^2\)

\(\Leftrightarrow0\le b^2c^2-2abcd+a^2d^2\)

\(\Leftrightarrow0\le\left(bc-ad\right)^2\)( đpcm )

24 tháng 2 2017

Câu 4a

\(\frac{a+b}{2}\ge\sqrt{ab}\)

\(\Leftrightarrow\left(\frac{a+b}{2}\right)^2\ge ab\)

\(\Leftrightarrow\frac{\left(a+b\right)^2}{4}\ge ab\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow a^2+2ab+b^2\ge4ab\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)( đpcm )

Câu 4c 

Áp dụng bất đẳng thức Cauchy

\(\Rightarrow3a+5b\ge2\sqrt{3a.5b}=2\sqrt{15ab}\)

\(\Rightarrow12\ge2\sqrt{15ab}\)

\(\Rightarrow6\ge\sqrt{15ab}\)

\(\Rightarrow6^2\ge15ab\)

\(\Rightarrow36\ge15ab\)

\(\Rightarrow ab\le\frac{12}{5}\)

\(\Leftrightarrow P\le\frac{12}{5}\)

Vậy GTLN  của \(P=\frac{12}{5}\)