Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(A=\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{9.9}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{8.9}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}\)
\(=1-\frac{1}{9}=\frac{8}{9}\Rightarrow A< \frac{8}{9}\)(1)
Lại có \(A=\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{9.9}>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9.10}=\frac{1}{2}-\frac{1}{10}=\frac{4}{10}=\frac{2}{5}\Rightarrow A>\frac{2}{5}\)(2)
Từ (1) (2) => \(\frac{2}{5}< A< \frac{8}{9}\left(\text{ĐPCM}\right)\)
Bài làm :
Ta có :
\(A=\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{9.9}>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
\(A>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(A>\frac{1}{2}-\frac{1}{10}\)
\(A>\frac{2}{5}\left(1\right)\)
Ta cũng có :
\( A=\frac{1}{2.2}+\frac{1}{3.3}+......+\frac{1}{9.9}< \frac{1}{1.2}+\frac{1}{2.3}+......+\frac{1}{8.9}\)
\(A< 1-\frac{1}{2}+\frac{1}{2}-......+\frac{1}{8}-\frac{1}{9}\)
\(A< 1-\frac{1}{9}\)
\(A< \frac{8}{9}\left(2\right)\)
\(\text{Từ (1) và (2) }\Rightarrow\frac{2}{5}< A< \frac{8}{9}\)
=> Điều phải chứng minh
Chúc bạn học tốt !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
A= 1/2.2 + 1/3.3 + 1/4.4 + 1/5.5 + 1/6.6 + 1/7.7 + 1/8.8 + 1/9.9
Vì 1/2.2 > 1/2.3; 1/3.3 > 1/3.4 ; 1/5.5 > 1/5.6;...... nên
1/2.2 +1/3.3 + 1/4.4 + 1/5.5 + 1/6.6 + 1/7.7 + 1/8.8 + 1/9.9 > 1/2.3 + 1/3.4 + 1/4.5 + 1/5.6 + 1/6.7 + 1/7.8 + 1/8.9 + 1/9.10
Ta có: 1/2.3 + 1/3.4 + 1/4.5 + 1/5.6 + 1/6.7 + 1/7.8 + 1/8.9 + 1/9.10
= 1/2-1/3 + 1/3 -1/4 + 1/4-1/5+...+1/9-1/10
= 1/2- 1/10
= 2/5
Vì A < 2/5 mà 2/5 <7/8 nên 2/5 < A < 7/8
Vậy....
Bài làm:
Ta có: \(S=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{9.9}\)
\(>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+..+\frac{1}{9.10}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)\(\Rightarrow\frac{2}{5}< S\)
Cái còn lại tự CM
\(A=\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)
\(2A=1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-\frac{1}{32}\)
\(2A+A=\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\right)+\left(1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-\frac{1}{32}\right)\)
\(3A=1-\frac{1}{64}\)
\(3A=\frac{63}{64}\Rightarrow A=\frac{63}{64}\div3=\frac{21}{64}< \frac{1}{3}\)
A= 7/5*7 + 7/7*9 + ... + 7/53*55
A= 7/2*( 2/5*7 + 2/7*9 + ... + 2/53*55 )
A= 7/2*( 7-5/5*7 + 9-7/7*9 + ... + 55-53/53*55 )
A= 7/2*( 1/5-1/7 + 1/7-1/9 + ... + 1/53-1/55 )
A= 7/2*( 1/5-1/55 )
A= 7/2*2/11
A= 7/11
A= 7/11 > 1/2
Nên: A > 1/2
B= 1/3 + 1/15 + 1/35 + ... + 1/99
B= 1/1*3 + 1/3*5 + 1/5*7 + ... + 1/9*11
B= 2*( 2/1*3 + 2/3*5 + 1/5*7 + ... + 2/9*11 )
B= 2*( 3-1/1*3 + 5-3/3*5 + 7-5/5*7 + ... + 11-9/9*11 )
B= 2*( 1/1-1/3 + 1/3-1/5 + 1/5-1/7 + ... + 1/9-1/11 )
B= 2*( 1/1-1/11 )
B= 2*10/11
B= 20/11
B= 20/11 < 1/2
Nên: B < 1/2
A= 7/5*7 + 7/7*9 + ... + 7/53*55
A= 7/2*( 2/5*7 + 2/7*9 + ... + 2/53*55 )
A= 7/2*( 7-5/5*7 + 9-7/7*9 + ... + 55-53/53*55 )
A= 7/2*( 1/5-1/7 + 1/7-1/9 + ... + 1/53-1/55 )
A= 7/2*( 1/5-1/55 )
A= 7/2*2/11
A= 7/11
A= 7/11 > 1/2
Nên: A > 1/2
B= 1/3 + 1/15 + 1/35 + ... + 1/99
B= 1/1*3 + 1/3*5 + 1/5*7 + ... + 1/9*11
B= 2*( 2/1*3 + 2/3*5 + 1/5*7 + ... + 2/9*11 )
B= 2*( 3-1/1*3 + 5-3/3*5 + 7-5/5*7 + ... + 11-9/9*11 )
B= 2*( 1/1-1/3 + 1/3-1/5 + 1/5-1/7 + ... + 1/9-1/11 )
B= 2*( 1/1-1/11 )
B= 2*10/11
B= 20/11
B= 20/11 < 1/2
Nên: B < 1/2