Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bđt: a2 + b2 > = (a + b)2/2
Cm đúng <=> 2a2 + 2b2 - a2 - 2ab - b2 > = 0
<=> (a - b)2 > = 0 (luôn đúng với mọi a,b
Khi đó, ta có: A = \(\left(1+\frac{1}{x}\right)^2+\left(1+\frac{1}{y}\right)^2\ge\frac{\left(2+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)
Áp dụng bđt: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
CM đúng <=> (a + b)2 > = 4ab
<=> (a - b)2 > = 0 (luôn đúng với mọi a,b)
Ta lại có: A \(\ge\frac{\left(2+\frac{4}{x+y}\right)^2}{2}=\frac{\left(2+\frac{4}{1}\right)^2}{2}=18\)
Dấu"=" xảy ra <=> x = y = 1/2
Vậy minA = 18/ <=> x = y = 1/2
a, \(A=\left(\frac{4}{2x+1}+\frac{4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)
\(=\left(\frac{4\left(x^2+1\right)}{\left(2x+1\right)\left(x^2+1\right)}+\frac{4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)
\(=\left(\frac{4x^2+4+4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)
\(=\frac{\left(2x+1\right)^2}{\left(x^2+1\right)\left(2x+1\right)}\frac{x^2+1}{x^2+2}=\frac{2x+1}{x^2+2}\)
Bđt phụ \(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\forall\)
\(\Leftrightarrow2a^2+2b^2\ge a^2+2ab+b^2\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow a^2+b^2-2ab=\left(a-b\right)^2\ge0\)(đúng)
Áp dụng ta được :
\(A\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}=\frac{\left(1+4\right)^2}{2}=\frac{25}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
Vậy \(A_{min}=\frac{25}{2}\) tại \(x=y=\frac{1}{2}\)
giúp mk vs mai mk phải nộp rồi